Project description:RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of VHL followed by mutations in epigenetic regulators PBRM1, SETD2, and BAP1. Mutations in SETD2, a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming. While m6A and H3K36me3 deregulation are separately implicated in renal tumorigenesis, H3K36me3 may participate directly in m6A targeting, but the m6A-H3K36me3 interplay has not been investigated in the context of ccRCC. Using RCC-relevant SETD2 isogenic knockout and rescue cell line models, we demonstrate a dynamic redistribution of m6A in the SETD2 depleted transcriptome, with a subset of transcripts involved in metabolic reprogramming demonstrating SETD2 dependent m6A and expression level changes. Using a panel of six histone modifications we show that m6A redistributes to regions enriched in gained active enhancers upon SETD2 inactivation. Finally, we demonstrate a reversal of transcriptomic programs involved in SETD2 loss mediated metabolic reprogramming, and reduced cell viability through pharmacological inhibition or genetic ablation of m6A writer METTL3 specific to SETD2 deficient cells. Thus, targeting m6A may represent a novel therapeutic vulnerability in SETD2 mutant ccRCC.
Project description:RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of VHL followed by mutations in epigenetic regulators PBRM1, SETD2, and BAP1. Mutations in SETD2, a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming. While m6A and H3K36me3 deregulation are separately implicated in renal tumorigenesis, H3K36me3 may participate directly in m6A targeting, but the m6A-H3K36me3 interplay has not been investigated in the context of ccRCC. Using RCC-relevant SETD2 isogenic knockout and rescue cell line models, we demonstrate a dynamic redistribution of m6A in the SETD2 depleted transcriptome, with a subset of transcripts involved in metabolic reprogramming demonstrating SETD2 dependent m6A and expression level changes. Using a panel of six histone modifications we show that m6A redistributes to regions enriched in gained active enhancers upon SETD2 inactivation. Finally, we demonstrate a reversal of transcriptomic programs involved in SETD2 loss mediated metabolic reprogramming, and reduced cell viability through pharmacological inhibition or genetic ablation of m6A writer METTL3 specific to SETD2 deficient cells. Thus, targeting m6A may represent a novel therapeutic vulnerability in SETD2 mutant ccRCC.
Project description:We report the application of H3K36me3 ChIP sequencing in SETD2 genotyped samples Examination of H3K36me3 in SETD2 wild-type, mutant renal cell carcinoma and SETD2 isogenic cell lines
Project description:Set domain-containing 2 (SETD2) is the most frequently mutated gene among all the histone methyltransferases (HMTs) in Clear cell renal cell carcinoma (ccRCC). Loss of function of SETD2 is significantly associated with poor prognosis in patients with ccRCC. A better understanding of the roles of SETD2 played in ccRCC can greatly improve the prognosis and quality of life of patients with kidney cancer. Clear cell renal carcinoma cell A498 were treated with si-SETD2 and si-NC, and the exosomes were extracted.
Project description:The dysregulation of the histone H3 lysine 36 (H3K36) methyltransferase, SETD2, is associated with worse clinical outcomes and metastasis in clear cell Renal Cell Carcinoma (ccRCC). Here, we reveal that kidney cancer cells displaying diminished H3K36me3 levels (SETD2 deficiency) show increased sensitivity to the anti-tumor effects of the DNA hypomethylating agent 5-aza-2’-deoxycytidine (Decitabine/DAC). DAC treatment induced stronger viral mimicry activation and immunostimulatory signals by higher transposable element (TE) expression in SETD2-mutant cancer cells. Surprisingly, we demonstrate that the increased TE abundance in SETD2-knockout (SETD2-KO) kidney cancer cells is substantially derived from mis-spliced products induced by DAC treatment. Epigenetic profiling suggests that differential DNA methylation, H3K36me3, and H3K9me3 marks across exons and intronic TEs might contribute to elevated mis-splicing rates specifically in the SETD2 loss context. Finally, SETD2 dysregulation also sensitized tumors in vivo to combinatorial therapy of DAC and immune checkpoint inhibitors highlighting the translational potential for this precision medicine.
Project description:The dysregulation of the histone H3 lysine 36 (H3K36) methyltransferase, SETD2, is associated with worse clinical outcomes and metastasis in clear cell Renal Cell Carcinoma (ccRCC). Here, we reveal that kidney cancer cells displaying diminished H3K36me3 levels (SETD2 deficiency) show increased sensitivity to the anti-tumor effects of the DNA hypomethylating agent 5-aza-2’-deoxycytidine (Decitabine/DAC). DAC treatment induced stronger viral mimicry activation and immunostimulatory signals by higher transposable element (TE) expression in SETD2-mutant cancer cells. Surprisingly, we demonstrate that the increased TE abundance in SETD2-knockout (SETD2-KO) kidney cancer cells is substantially derived from mis-spliced products induced by DAC treatment. Epigenetic profiling suggests that differential DNA methylation, H3K36me3, and H3K9me3 marks across exons and intronic TEs might contribute to elevated mis-splicing rates specifically in the SETD2 loss context. Finally, SETD2 dysregulation also sensitized tumors in vivo to combinatorial therapy of DAC and immune checkpoint inhibitors highlighting the translational potential for this precision medicine.
Project description:Patients with polycystic kidney disease (PKD) encounter a high risk of clear cell renal cell carcinoma (ccRCC), a malignant tumor with dysregulated lipid metabolism. SET domain–containing 2 (SETD2) has been identified as an important tumor suppressor gene in ccRCC. However, the role of SETD2 in tumorigenesis during the transition from PKD to ccRCC remains largely unexplored. Herein, we performed metabolomics, lipidomics, transcriptomics and proteomics with SETD2 loss induced PKD-ccRCC transition mouse model. To characterize biological responses triggered by SETD2 deletion during PKD-ccRCC transition at the protein level, we conducted global proteomics studies.