Project description:Chromosomal instability (CIN) is thought to be a source of mutability in human cancer. However, CIN is highly deleterious for the cell, and the resulting aneuploidy induces metabolic stress and compromises cell fitness. Here we utilized the X-chromosome dosage compensation mechanism and changes in X-chromosome number to demonstrate in Drosophila epithelial cells the causal relationship between CIN, aneuploidy, gene dosage imbalance and tumorigenesis. Whereas the harmful effects of CIN can be buffered by resetting the X-chromosome dosage compensation to compensate for changes in X-chromosome number, interfering with the mechanisms of dosage compensation suffices to induce tumorigenesis. In addition, multiple mechanisms buffer the deleterious effects of CIN including DNA-damage repair, activation of the p38 signalling pathway, and induction of cytokine expression to promote compensatory cell proliferation. These data reveal a key role of gene dosage imbalances to CIN-induced programmed cell death and tumorigenesis and the existence of robust compensatory mechanisms.
Project description:Dosage imbalance for X-chromosomal genes contributes to sex differences, in particular during early development, when both X chromosomes are active in females. X-encoded inhibitors of the differentiation-promoting MAP kinase (MAPK) signalling pathway slow down development, increase levels of naive pluripotency factors, and decrease MAPK target gene expression. Through a hierarchical CRISPR screening approach in murine embryonic stem cells(mESC) we have comprehensively identified X-linked genes that modulate MAPK signalling, pluripotency factor expression, and differentiation. Here, we carried out transcriptional profiling of the two top hits, Dusp9 and Klhl13, and observe that Klhl13 contributes more to the X-dosage induced transcriptome changes than Dusp9, and that a combined effect of both can explain about 50% of the observed sex differences.
Project description:Dosage imbalance for X-chromosomal genes contributes to sex differences, in particular during early development, when both X chromosomes are active in females. X-encoded inhibitors of the differentiation-promoting MAP kinase (MAPK) signalling pathway slow down development, increase levels of naive pluripotency factors, and decrease MAPK target gene expression. Through a hierarchical CRISPR screening approach in murine embryonic stem cells(mESC) we have comprehensively identified X-linked genes that modulate MAPK signalling, pluripotency factor expression, and differentiation. Here, we carried out transcriptional profiling of the two top hits, Dusp9 and Klhl13, and observe that Klhl13 contributes more to the X-dosage induced transcriptome changes than Dusp9, and that a combined effect of both can explain about 50% of the observed sex differences.
Project description:Drosophila X chromosomes are subject to dosage compensation in males and are known to have a specialized chromatin structure in the male soma. We are interested in how specific chromatin structure change contributes to X chromosome hyperactivity and dosage compensation. We have conducted a global analysis of localize two dosage compensation complex dependent histone marks H4AcK16 and H3PS10 and one dosage compensation complex independent histone mark H3diMeK4 in the genome, especially on X chromosome by ChIP-chip approach in both male and female adult flies. We also probed general genomewide chromatin structure by deep DNA sequencing of sheared ChIP input DNA from male and female adult flies.
Project description:Dosage imbalance for X-chromosomal genes contributes to sex differences, in particular during early development, when both X chromosomes are active in females. X-encoded inhibitors of the differentiation-promoting MAP kinase (MAPK) signalling pathway slow down development, increase levels of naive pluripotency factors, and decrease MAPK target gene expression. Through a hierarchical CRISPR screening approach in murine embryonic stem cells(mESC) we have comprehensively identified X-linked genes that modulate MAPK signalling, pluripotency factor expression, and differentiation.
Project description:Genomic imbalance caused by varying the dosage of individual chromosomes or chromosomal segments (aneuploidy) has more detrimental effects than altering the dosage of complete chromosome sets (ploidy). Previous analysis on RNA-sequencing data of varied dosage of various chromosomal regions in maize (Zea mays) revealed global modulation of gene expression both on the varied chromosome (cis) and the remainder of the genome (trans). Dysregulation of microRNA (miRNA) dosage has been reported to have profound deleterious effects in many species. miRNAs are preferentially retained as duplicates following whole-genome duplication in grass species and are postulated to be dosage-sensitive. However, little is known regarding the role of miRNAs under genomic imbalance. We examined the impact of increased and/or decreased dosage of 1 interstitial and 19 distal chromosomal regions in concert with a whole-genome ploidy series of haploid, diploid, triploid, and tetraploid via small RNA-sequencing of diploid and haploid maize mature leaf tissue to investigate the impact of aneuploidy and polyploidy on expression of miRNAs. In general, cis miRNAs in aneuploids present a predominant gene-dosage effect, whereas trans miRNAs trend toward the inverse level, although other types of responses including dosage compensation, increased effect, and decreased effect also occur. Significant correlations between expression levels of miRNAs and their targets were identified in aneuploids, indicating the regulatory role of miRNAs on gene expression triggered by genomic imbalance. The findings provide novel insights into understanding of gene balance from the aspect of the function of miRNAs.
Project description:We examined the impact of both increased and decreased dosage of fifteen distal and one interstitial chromosomal regions via RNA-seq of maize mature leaf tissue to reveal new aspects of genomic imbalance. The results indicate that significant changes in gene expression in aneuploids occur both on the varied chromosome (cis) and the remainder of the genome (trans), with a wider spread of modulation compared with the whole-ploidy series of haploid to tetraploid. In general, cis genes in aneuploids range from a gene-dosage effect to dosage compensation, whereas for trans genes the most common effect is an inverse correlation in that expression is modulated towards the opposite direction of the varied chromosomal dosage, although positive modulations also occur. Furthermore, this analysis revealed the existence of increased and decreased effects in which expression of many genes under genome imbalance are modulated towards the same direction regardless of increased or decreased chromosomal dosage, which is predicted from kinetic considerations of multicomponent molecular interactions. The findings provide novel insights into understanding mechanistic aspects of gene regulation.