Project description:Rumen bacterial species belonging to the genera Butyrivibrio are important degraders of plant polysaccharides, particularly hemicelluloses (arabinoxylans) and pectin. Currently, four distinct species are recognized which have very similar substrate utilization profiles, but little is known about how these microorganisms are able to co-exist in the rumen. To investigate this question, Butyrivibrio hungatei MB2003 and Butyrivibrio proteoclasticus B316T were grown alone or in co-culture on the insoluble substrates, xylan or pectin, and their growth, release of sugars, fermentation end products and transcriptomes were examined. In single cultures, B316T was able to degrade and grow well on xylan and pectin, while MB2003 was unable to utilize either of these insoluble substrates to support significant growth. Co-cultures of B316T grown with MB2003 revealed that MB2003 showed almost equivalent growth to B316T when either xylan or pectin were supplied as substrates. The effect of co-culture on the transcriptomes of B316T and MB2003 was very marked; B316T transcription was largely unaffected by the presence MB2003, but MB2003 expressed a wide range of genes encoding carbohydrate degradation/metabolism and oligosaccharide transport/assimilation in order to compete with B316T for the released sugars. These results suggest that B316T has a role as an initiator of the primary solubilization of xylan and pectin, while MB2003 competes effectively as a scavenger for the released soluble sugars to enable its growth and maintenance in the rumen.
Project description:The growth and productivity of ruminants depends on a complex microbial community found in their fore-stomach (rumen), which is able to breakdown plant polysaccharides and ferment the released sugars. Butyrivibrio proteoclasticus B316T is a Gram-positive polysaccharide-degrading, butyrate-producing bacterium that is present at high numbers in the rumen of animals consuming pasture or grass silage based diets. B316T is one of a small number of rumen fibrolytic microbes capable of efficiently degrading and utilizing xylan, as well as being capable of utilizing arabinose, xylose, pectin and starch. We have therefore carried out a proteomic analysis of B316T to identify intracellular enzymes that are implicated in the metabolism of internalized xylan. Three hundred and ninety four proteins were identified including enzymes that have potential to metabolize assimilated products of extracellular xylan digestion. Identified enzymes included arabinosidases, esterases, an endoxylanase, and β-xylosidase. The presence of intracellular debranching enzymes indicated that some hemicellulosic side-chains may not be removed until oligosaccharides liberated by extracellular digestion have been assimilated by the cells. The results support a model of extracellular digestion of hemicellulose to oligosaccharides that are then transported to the cytoplasm for further digestion by intracellular enzymes.
Project description:The rumen of dairy cattle can be thought of as a large, stable fermentation vat and as such it houses a large and diverse community of microorganisms. The bacterium Butyrivibrio proteoclasticus is a representative of a significant component of this microbial community. It is a xylan-degrading organism whose genome encodes a large number of open reading frames annotated as fibre-degrading enzymes. This suite of enzymes is essential for the organism to utilize the plant material within the rumen as a fuel source, facilitating its survival in this competitive environment. Xsa43E, a GH43 enzyme from B. proteoclasticus, has been structurally and functionally characterized. Here, the structure of selenomethionine-derived Xsa43E determined to 1.3?Å resolution using single-wavelength anomalous diffraction is reported. Xsa43E possesses the characteristic five-bladed ?-propeller domain seen in all GH43 enzymes. GH43 enzymes can have a range of functions, and the functional characterization of Xsa43E shows it to be an arabinofuranosidase capable of cleaving arabinose side chains from short segments of xylan. Full functional and structural characterization of xylan-degrading enzymes will aid in creating an enzyme cocktail that can be used to completely degrade plant material into simple sugars. These molecules have a range of applications as starting materials for many industrial processes, including renewable alternatives to fossil fuels.
Project description:Rumen bacterial species belonging to the genus Butyrivibrio are important degraders of plant polysaccharides, particularly hemicelluloses (arabinoxylans) and pectin. Currently, four species are recognized; they have very similar substrate utilization profiles, but little is known about how these microorganisms are able to coexist in the rumen. To investigate this question, Butyrivibrio hungatei MB2003 and Butyrivibrio proteoclasticus B316T were grown alone or in coculture on xylan or pectin, and their growth, release of sugars, fermentation end products, and transcriptomes were examined. In monocultures, B316T was able to grow well on xylan and pectin, while MB2003 was unable to utilize either of these insoluble substrates to support significant growth. Cocultures of B316T grown with MB2003 revealed that MB2003 showed growth almost equivalent to that of B316T when either xylan or pectin was supplied as the substrate. The effect of coculture on the transcriptomes of B316T and MB2003 was assessed; B316T transcription was largely unaffected by the presence of MB2003, but MB2003 expressed a wide range of genes encoding proteins for carbohydrate degradation, central metabolism, oligosaccharide transport, and substrate assimilation, in order to compete with B316T for the released sugars. These results suggest that B316T has a role as an initiator of primary solubilization of xylan and pectin, while MB2003 competes effectively for the released soluble sugars to enable its growth and maintenance in the rumen.IMPORTANCE Feeding a future global population of 9 billion people and climate change are the primary challenges facing agriculture today. Ruminant livestock are important food-producing animals, and maximizing their productivity requires an understanding of their digestive systems and the roles played by rumen microbes in plant polysaccharide degradation. Butyrivibrio species are a phylogenetically diverse group of bacteria and are commonly found in the rumen, where they are a substantial source of polysaccharide-degrading enzymes for the depolymerization of lignocellulosic material. Our findings suggest that closely related species of Butyrivibrio have developed unique strategies for the degradation of plant fiber and the subsequent assimilation of carbohydrates in order to coexist in the competitive rumen environment. The identification of genes expressed during these competitive interactions gives further insight into the enzymatic machinery used by these bacteria as they degrade the xylan and pectin components of plant fiber.
Project description:Determining the role of rumen microbes and their enzymes in plant polysaccharide breakdown is fundamental to understanding digestion and maximising productivity in ruminant animals. Butyrivibrio proteoclasticus B316(T) is a gram-positive, butyrate-forming rumen bacterium with a key role in plant polysaccharide degradation. The 4.4 Mb genome consists of 4 replicons; a chromosome, a chromid and two megaplasmids. The chromid is the smallest reported for all bacteria, and the first identified from the phylum Firmicutes. B316 devotes a large proportion of its genome to the breakdown and reassembly of complex polysaccharides and has a highly developed glycobiome when compared to other sequenced bacteria. The secretion of a range of polysaccharide-degrading enzymes which initiate the breakdown of pectin, starch and xylan, a subtilisin family protease active against plant proteins, and diverse intracellular enzymes to break down oligosaccharides constitute the degradative capability of this organism. A prominent feature of the genome is the presence of multiple gene clusters predicted to be involved in polysaccharide biosynthesis. Metabolic reconstruction reveals the absence of an identifiable gene for enolase, a conserved enzyme of the glycolytic pathway. To our knowledge this is the first report of an organism lacking an enolase. Our analysis of the B316 genome shows how one organism can contribute to the multi-organism complex that rapidly breaks down plant material in the rumen. It can be concluded that B316, and similar organisms with broad polysaccharide-degrading capability, are well suited to being early colonizers and degraders of plant polysaccharides in the rumen environment.