Project description:Transcriptional profiling of mouse kidney papilla cells comparing control GFP- cells with GFP+ labeled cells. Mouse kidney papillae were dissected. GFP- and GFP+ cell populations were isolated by FACS. The latter represent slow cycling label retaining cells (LRCs).
Project description:Different types of hair follicles can be found in the skin of mice. It is believed that the signals that control hair follicle differentiation arise from cells in a structure called the dermal papilla. Understanding the nature of those signals is of interest for the biology of the normal tissue. We have developed a technique for isolation of dermal cells by enzymatic digestion of intact skin. We have identified two subpopulations of cells that can be separated by FACS. The Sox2-positive CD133-positive cells are found exclusively in the dermal papillae of guard/awl/auchene hairs, while Sox2-negative, CD133-positive cells are found in the other hair follicle types. We compared these populations with unfractionated dermal cells. We isolated the following 3 populations of cells from the back skin of neonatal mice (P2) by Flow Cytometry: 1) GFP-CD133- Total dermal cells 2) GFP-CD133+ Dermal Papilla cells 3) GFP+CD133+ Dermal Papilla cells The yield is approximately 50,000 cells of each population.
Project description:Label retaining and non-retaining muscle stem cells from young and aged H2B-GFP+/-;rtTA+/- were profiled by single cell RNA-seq at two timepoints
Project description:Homeostatic hematopoietice stem cells (HSCs) with greater divisional history lose repopulating potential after very few cell divisions. Divisional history overrides both phenotype and immediate quiescence in determining functional activity. In GFP label retaining system GFP is progressively diluted when cells proceed through a cascade of divisions. We used a GFP label retaining system and performed microarray expression analyses to track the changes in the gene expression profile of bone marrow (BM) LSK cells that relates to divisional history during homeostasis.
Project description:Hierarchically organized tissues, such as hematopoietic systems, muscle, or skin harbor deeply quiescent stem cells which start proliferating in response to external insults. In contrast, it remains obscure whether similar quiescent cells exist in epithelia of digestive organs. Here we identified a deeply quiescent population in gastric corpus but not in other gastrointestinal organs after systematic examination of H2b-GFP label-retaining cells. The label-retaining cells in corpus epithelia belonged to a subpopulation of chief cells that were located near basal layers of corpus and did not overlap with Troyhigh, Lgr5high, or Misthigh cell population. The identified quiescent cells were marked with activation of Atf4 and unfolded protein response. External damages by indomethacin treatment triggered proliferation of the quiescent populations, indicating that chief cells of gastric corpus harbor deeply quiescent reserve cells with high levels of internal stress response activity.
Project description:The identification of Lgr5 as an intestinal stem cell marker has made it possible to isolate and study primary stem cells from small intestine. Using the cell cycle specific expression og the mKi67 gene, we generated a novel Ki67-RFP knock-in allele which identifies dividing cells. Using Lgr5-GFP;Ki67-RFP mice, we isolated CBCs with distinct Wnt signaling levels and cell cycle features, and analyzed their global gene expression pattern using microarrays. We concluded that the cycling Lgr5hi stem cells exit the cell cycle in transition into the secretory lineage. Lgr5med Ki67low intermediate precursors reside in the zone of differentiation, resemble quiescent stem cells and generate the Dll1+ secretory precursors and the label retaining cells. Our findings support the cycling stem cell hypothesis and highlight the heterogeneity of early progenitors during lineage commitment. We used cell fractions of intestines from Lgr5-EGFP-ires-CreERT2 mice, expressing GFP under the control of the Lgr5 promoter, and Ki67-TagRFP mice where the RFP is fused to the C-terminus of the endogenous Ki67 gene. RNA was isolated from several FACS sorted cell populations of combinations expressing different levels of GFP and RFP: GFP high RFP high (Lgr5hi Ki67hi), GFP high RFP low (Lgr5hi Ki67low), GFP medium RFP high (Lgr5med Ki67high) and GFP medium RFP low (Lgr5med Ki67low). Purified RNA was processed, hybridized, and scanned according to the manufacturerM-bM-^@M-^Ys protocol and were hybridized on Affymetrix Mouse Gene ST 1.1 arrays).