Project description:The development of drug resistance is still a major impediment for the successful treatment of cancer, such as advanced stage ovarian cancer, which has a 5-year survival rate of only 30%. The molecular processes that contribute to resistance have been extensively studied, however, not much is known about the role of microRNAs. We compared microRNA expression profiles of three isogenic cisplatin sensitive and resistant cell line pairs. The only microRNA that was consistently downregulated (FDR = 0.000) in all resistant cell lines was miR-634. We investigated the effects of miR-634 modulation in ovarian cancer cell lines and patient derived tumor cells. Overexpression of miR-634 gave rise to a modest G1 phase block and enhanced apoptosis. Furthermore, miR-634 resensitized resistant ovarian cancer cell lines and patient derived tumor cells to cisplatin chemotherapy. Similarly, miR-634 enhanced the response of tumor cells to carboplatin and doxorubicin, but not to paclitaxel. We showed that miR-634 regulates cyclin D1 (CCND1), which is required for the G1-S phase transition, explaining the effects on the cell cycle. In addition, miR-634 repressed expression of GRB2, ERK2, RSK1 and RSK2, components of the Ras-MAPK pathway. Altogether, our findings suggest that miR-634 modulates several cancer relevant targets and therefore miR-634 is an attractive therapeutic candidate to resensitize chemotherapy resistant ovarian tumors.
Project description:The development of drug resistance is still a major impediment for the successful treatment of cancer, such as advanced stage ovarian cancer, which has a 5-year survival rate of only 30%. The molecular processes that contribute to resistance have been extensively studied, however, not much is known about the role of microRNAs. We compared microRNA expression profiles of three isogenic cisplatin sensitive and resistant cell line pairs. The only microRNA that was consistently downregulated (FDR = 0.000) in all resistant cell lines was miR-634. We investigated the effects of miR-634 modulation in ovarian cancer cell lines and patient derived tumor cells. Overexpression of miR-634 gave rise to a modest G1 phase block and enhanced apoptosis. Furthermore, miR-634 resensitized resistant ovarian cancer cell lines and patient derived tumor cells to cisplatin chemotherapy. Similarly, miR-634 enhanced the response of tumor cells to carboplatin and doxorubicin, but not to paclitaxel. We showed that miR-634 regulates cyclin D1 (CCND1), which is required for the G1-S phase transition, explaining the effects on the cell cycle. In addition, miR-634 repressed expression of GRB2, ERK2, RSK1 and RSK2, components of the Ras-MAPK pathway. Altogether, our findings suggest that miR-634 modulates several cancer relevant targets and therefore miR-634 is an attractive therapeutic candidate to resensitize chemotherapy resistant ovarian tumors. The miRNA expression profile was determined of three cisplatin sensitive/resistant cell line pairs (ovarian cancer cell line pair A2780/A2780 DDP; colon cancer cell line pair HCT8/HCT8 DDP; bladder cancer cell line pairT24/T24 DDP10).
Project description:For advanced oral squamous cell carcinoma (OSCC), increasing sensitivity to chemotherapy is a major challenge in improving treatment outcomes, and targeting cytoprotective processes that lead to the chemotherapy resistance of cancer cells may be therapeutically promising. Tumor-suppressive microRNAs (miRs) can target multiple cancer-promoting genes concurrently, and are thus expected to be useful seeds for cancer therapeutics. We revealed that miR-634-meditated targeting of multiple cytoprotective process-related genes, including cellular inhibitor of apoptosis proteins 1 (cIAP1), can effectively increase cisplatin (CDDP)-induced cytotoxicity and overcome CDDP resistance in OSCC cells. The combination of topical treatment with miR-634 ointment and administration of CDDP was synergistically effective against OSCC-tumor growth in a xenograft mouse model. Furthermore, the expression of miR-634 target genes is frequently upregulated in primary OSCC tumors. Our study suggests that reversing miR-634-mediated cytoprotective processes activated in cancer cells is a potentially useful strategy to improve CDDP efficacy against advanced OSCC.
Project description:To identify genes affected by miR-634 overexpression, we transfected with 20nmol of miR-634 or miR-negative control (NC) in HeLa, KYSE850, or U2OS cells. After 2 days, RNA was extracted, and then expression analysis was performed using agilent microarray.
Project description:For cutaneous squamous cell carcinoma (cSCC), topical treatment is an essential option for patients who are not candidates for or refuse surgery. Epidermal growth factor receptor (EGFR) plays a key role in the development of cSCC, but EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib, have shown only partial clinical benefit in this disease. Thus, there is an unmet need to develop novel strategies for improving the efficacy of TKIs in cSCC. We previously demonstrated that the tumor-suppressive microRNA (miRNA) miR-634 functions as a negative modulator of cytoprotective cancer cell survival processes and is a useful anticancer therapeutic agent. Here, we found that topical application of an ointment containing miR-634 inhibited in vivo tumor growth without toxicity in a cSCC xenograft mouse model and a DMBA/TPA-induced papilloma mouse model. Functional validation revealed that miR-634 overexpression reduced glutaminolysis by directly targeting ASCT2, a glutamine transporter. Furthermore, overexpression of miR-634 synergistically enhanced TKI-induced cytotoxicity by triggering severe energetic stress in vitro and in vivo. Thus, we propose that topical treatment with miR-634 ointment is a useful strategy for improving for EGFR TKI-based therapy for cSCC.
Project description:To identify genes affected by miR-634 overexpression, we transfected with 20nmol of miR-634 or miR-negative control (NC) in HeLa, KYSE850, or U2OS cells. After 2 days, RNA was extracted, and then expression analysis was performed using agilent microarray. Expression microarray with miR-634 or miR-NC transfected HeLa, KYSE850, or U2OS cells were performed in duplicate.