Project description:Arabidopsis fc2-1 mutants fail to properly de-etiolate after a prolonged period in the dark. Our goal was to monitor whole genome expression during the first 2 hours of de-etiolation to determine the cuase of this growth arrest. In comparison with other mutants that also affect de-etiolation, we identified a subset of genes specifically regulated by FC2 function during de-etiolation.
Project description:Arabidopsis fc2-1 mutants fail to properly de-etiolate after a prolonged period in the dark. Our goal was to monitor whole genome expression during the first 2 hours of de-etiolation to determine the cuase of this growth arrest. In comparison with other mutants that also affect de-etiolation, we identified a subset of genes specifically regulated by FC2 function during de-etiolation. Seedlings were grown in the dark for 4 days and then exposed to white light for 30 or 120 minutes to initiate de-etiolation and photomorphogenesis
Project description:Shade avoidance syndrome (SAS) is a strategy of major adaptive significance that includes the elongation of vegetative structures and leaf hyponasty. Major transcriptional rearrangements underlie for the reallocation of resources to elongate vegetative structures and redefine the plant architecture under shade to compete for photosynthesis light. BBX28 is a transcription factor involved in seedling de-etiolation and flowering in Arabidopsis thaliana, but its function in the SAS is completely unknown. Here we studied the function of BBX28 in the regulation of gene expression under simulated shade conditions.
Project description:Light triggers chloroplast differentiation whereby the etioplast transforms into a photosynthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of events during chloroplast differentiation remains poorly understood. Here we used whole-seedling proteome data to quantify changes in protein abundances during the course of de-etiolation within the first four days of light exposure. This data complements quantitative lipid and (ultra)structural data described in Pipitone et al. (doi: https://doi.org/10.1101/2020.08.30.274043).