Project description:We have used deep sequencing of small RNAs from nodules and root apexes of the model legume Medicago truncatula, to identify 113 novel candidate miRNAs. These miRNAs (legume or Mt-specific) are encoded by 278 putative hairpin precursors in the M. truncatula genome. Several miRNAs are differentially expressed in nodules and root tips and large variety of targets could be predicted for these genes. Specific miRNA isoforms showed contrasting expression patterns in these tissues Keywords: Transcriptome analysis
Project description:Molecular Elasticity and Adjustment of Drought Recovery Dynamics of 14N- and 15N-fertilized Legume Medicago truncatula. Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought response and a more thorough understanding of the underlying molecular mechanisms. During drought stress and recovery, the metabolome and proteome regulate and are regulated through diverse mechanisms including synthesis and degradation. In order to study this complex regulation network, a front-end multilevel analysis is presented for the first time, investigating protein turnover, regulatory classes of proteins and metabolites as well as post translational ubiquitination of a target set of proteins during a severe stress and recovery scenario in the model legume Medicago truncatula. Evidence for enhanced translational proteome regulation was observed during drought recovery and functional clusters of differentially dynamic phases during the course of recovery were defined. The data give novel insights into molecular elasticity that enable recovery of drought stressed plants. Additionally, these results offer putative targets and metabolic pathways for future plant-bioengineering towards enhanced drought stress tolerance.
Project description:Medicago truncatula, which has a relatively small diploid genome, has been adopted as a model species for legume genomics. To enhance its value as a model, we have generated a gene expression atlas that provides a global view of gene expression in all major organ systems of this species, with special emphasis on nodule and seed development.
Project description:The objective of this study was to evaluate the effect of the oomycete Aphanomyces euteiches (strain ATCC201684) on the legume model Medicago truncatula (F83005-5 line) transcritpome.
Project description:Using a dedicated split-root approach, we identified miRNAs regulated systemically by nitrogen availability in both shoots and roots of the Medicago truncatula model legume, depending on the CRA2 pathway, highlighting the phosphate-related miR399.
Project description:Transcriptional profiling of seeds of Medicago truncatula during maturation. To identify genes that are regulated during seed maturation in the model legume Medicago truncatula, plants at flowering stage were grown at variable light and temperature conditions under greenhouse environment (period March-June). Seeds were then collected at different stages of development. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed to follow the differential expression of genes during seed maturation.
Project description:Transcriptional profiling of seeds of Medicago truncatula during maturation. To identify genes that are regulated during seed maturation in the model legume Medicago truncatula, plants at flowering stage were grown at variable light and temperature conditions under greenhouse environment (period March-June). Seeds were then collected at different stages of development. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed to follow the differential expression of genes during seed maturation.
Project description:Transcriptional profiling of seeds of Medicago truncatula during maturation. To identify genes that are regulated during seed maturation in the model legume Medicago truncatula, plants at flowering stage were grown at controlled temperature of 21-19°C, 16h light. Seeds were then collected at different stages of development. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed to follow the differential expression of genes during seed maturation.