Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti.
Project description:BackgroundResequencing can be used to identify genome variations underpinning many morphological and physiological phenotypes. Legume model plant Medicago truncatula ecotypes Jemalong A17 (J. A17) and R108 differ in their responses to mineral toxicity of aluminum and sodium, and mineral deficiency of iron in growth medium. The difference may result from their genome variations, but no experimental evidence supports this hypothesis.ResultsA total of 12,750 structure variations, 135,045 short insertions/deletions and 764,154 single nucleotide polymorphisms were identified by resequencing the genome of R108. The suppressed expression of MtAACT that encodes a putative aluminum-induced citrate efflux transporter by deletion of partial sequence of the second intron may account for the less aluminum-induced citrate exudation and greater accumulation of aluminum in roots of R108 than in roots of J. A17, thus rendering R108 more sensitive to aluminum toxicity. The higher expression-level of MtZpt2-1 encoding a TFIIIA-related transcription factor in J. A17 than R108 under conditions of salt stress can be explained by the greater number of stress-responsive elements in its promoter sequence, thus conferring J. A17 more tolerant to salt stress than R108 plants by activating the expression of downstream stress-responsive genes. YSLs (Yellow Stripe-Likes) are involved in long-distance transport of iron in plants. We found that an YSL gene was deleted in the genome of R108 plants, thus rendering R108 less tolerance to iron deficiency than J. A17 plants.ConclusionsThe deletion or change in several genes may account for the different responses of M. truncatula ecotypes J. A17 and R108 to mineral toxicity of aluminum and sodium as well as iron deficiency. Uncovering genome variations by resequencing is an effective method to identify different traits between species/ecotypes that are genetically related. These findings demonstrate that analyses of genome variations by resequencing can shed important light on differences in responses of M. truncatula ecotypes to abiotic stress in general and mineral stress in particular.
Project description:BackgroundStructural variants (SVs) constitute a large proportion of the genomic variation that results in phenotypic variation in plants. However, they are still a largely unexplored feature in most plant genomes. Here, we present the whole-genome landscape of SVs between two model legume Medicago truncatula ecotypes-Jemalong A17 and R108- that have been extensively used in various legume biology studies.ResultsTo catalogue SVs, we first resolved the previously published R108 genome assembly (R108 v1.0) to chromosome-scale using 124 × Hi-C data, resulting in a high-quality genome assembly. The inter-chromosomal reciprocal translocations between chromosomes 4 and 8 were confirmed by performing syntenic analysis between the two genomes. Combined with the Hi-C data, it appears that these translocation events had a significant effect on chromatin organization. Using both whole-genome and short-read alignments, we identified the genomic landscape of SVs between the two genomes, some of which may account for several phenotypic differences, including their differential responses to aluminum toxicity and iron deficiency, and the development of different anthocyanin leaf markings. We also found extensive SVs within the nodule-specific cysteine-rich gene family which encodes antimicrobial peptides essential for terminal bacteroid differentiation during nitrogen-fixing symbiosis.ConclusionsOur results provide a near-complete R108 genome assembly and the first genomic landscape of SVs obtained by comparing two M. truncatula ecotypes. This may provide valuable genomic resources for the functional and molecular research of legume biology in the future.
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti.
Project description:Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones appear to play a role in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATIs) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. We compared the transcriptional responses of M. truncatula roots treated with ATIs to roots inoculated with Sinorhizobium meliloti. The transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment were opposite to roots treated with S. meliloti. Three independent biological replicates were performed at each time point (1 and 7 days after treatment) for each treatment (buffer and ATI).