Project description:Abstract Leptospirosis is one of the most important zoonoses. Leptospira interrogans serovar Lai is a pathogenic spirochete that is responsible for leptospirosis. Extracellular proteins play an important role in the pathogenicity of this bacterium. In this study, L. interrogans serovar Lai was grown in protein-free medium; the supernatant was collected and subsequently analyzed as the extracellular proteome. A total of 66 proteins with more than two unique peptides were detected by MS/MS, and 33 of these were predicted to be extracellular proteins by a combination of bioinformatics analyses, including Psortb, cello, SoSuiGramN and SignalP. Comparisons of the transcriptional levels of these 33 genes between in vivo and in vitro conditions revealed that 15 genes were upregulated and two genes were downregulated in vivo compared to in vitro. A BLAST search for the components of secretion system at the genomic and proteomic levels revealed the presence of the complete type I secretion system and type II secretion system in this strain. Moreover, this strain also exhibits complete Sec translocase and Tat translocase systems. The extracellular proteome analysis of L. interrogans will supplement the previously generated whole proteome data and provide more information for studying the functions of specific proteins in the infection process and for selecting candidate molecules for vaccines or diagnostic tools for leptospirosis.
Project description:Many microorganisms, as well as plants and fungi, synthesize thiamin, but vertebrates do not produce it. Phosphomethyl pyrimidine kinase is an enzyme involved in an intermediary step of thiamin biosynthesis from purine molecules. This enzyme is absent in humans. Thus, it is a potential chemotherapeutic target for antileptospiral treatment. Structure of this enzyme from Leptospira interrogans serovar lai strain 56601 has not yet been elucidated. We used the structural template of phosphomethyl pyrimidine kinase from Thermus thermophilus HB8 for modeling the phosphomethyl pyrimidine kinase structure from Leptospira interrogans serovar lai strain 56601 . The model is deposited in Protein Data Bank (PDB ID: 2G53) at RCSB. Thus, we analyse and propose the usefulness of the modeled phosphomethyl pyrimidine kinase for the design of suitable inhibitors towards the treatment of leptospirosis.
Project description:L. interrogans, a causative agent of leptospirosis, can survive in the environment for lengthy periods of time in between infection of mammalian hosts. In order to identify genes involved in survival in the early spirochetemic phase of infection, we performed a transcriptional analysis of L. interrogans serovar Copenhageni upon exposure to serum in comparison with EMJH medium.
Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses.
Project description:The overall goal of these experiments was to determine how human endothelial cells respond to pathogenic Leptospira interrogans. Leptospira interrogans causes leptospirosis, the most widespread zoonotic infection in the world. A hallmark of leptospirosis is widespread endothelial damage, which in severe cases leads to hemorrhage. In these experiments, we infected two endothelial cell lines with pathogenic Leptospira interrogans serovar Canicola strain Ca12-005, and as controls, with the non-pathogenic Leptospira biflexa serovar Patoc strain Pfra. As additional controls, uninfected cells were also included in the analyses.
Project description:An examination of the two Leptospira interrogans genomes sequenced so far reveals few genetic differences, including an extra DNA region, 54 kb in length, in L. interrogans serovar Lai. This locus contains 103 predicted coding sequences that are absent from the genome of L. interrogans serovar Copenhageni, of which only 20% had significant BLASTP hits in GenBank. By analyzing the L. interrogans serovar Lai genome by pulsed-field gel electrophoresis, we also found that this 54-kb DNA fragment exists as a circular plasmid. This was confirmed by amplification of a DNA fragment corresponding to that of the predicted fragment if this region excised from the chromosome and its left and right ends joined together. In addition, cloning of the putative rep gene of this DNA region was responsible for autonomous replication in Leptospira spp., therefore generating a new Escherichia coli-Leptospira sp. shuttle vector. Taken together, our results show that this genomic island can excise from the chromosome and form a replicative plasmid. Analysis of the distribution of this genomic island revealed that highly related sequences exist in other L. interrogans virulent strains. This genomic island, containing a high proportion of novel genes, may have an important role in spreading genes, including virulence factors, among bacterial populations.
Project description:L. interrogans, a causative agent of leptospirosis, can survive in the environment for lengthy periods of time in between infection of mammalian hosts. In order to identify genes involved in survival in the early spirochetemic phase of infection, we performed a transcriptional analysis of L. interrogans serovar Copenhageni upon exposure to serum in comparison with EMJH medium. Analysis used RNA derived from serum- and EMJH-treated L. interrogans serovar Copenhageni as experimental and control samples, respectively. The samples were composed of 3 biological replicates with dye swap for each replicate, resulting in 6 arrays. Direct comparisons were made between arrays of experimental and control samples using raw data pulled from two different channels for data analysis.
Project description:In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.