Project description:RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2.
Project description:This is a cell culture based study to asses the impact of ZEA (Zearalenone) and E. coli co-contamination on IPEC cells, these is a normal epithelial cell line isolated from a new born piglet. ZEA is a mycotoxin with a negative impact in human health. The microarray is a custom Agilent Technology array slide with the AMAID: 05685.
Project description:Purpose: The goals of this study are studies the response of annual Zea mays ssp. mexicana L. under cold and drought stress Methods: The seedlings of zea may ssp. mexicana L. were generated by Illumina HiSeq2500 deep-sequencing. In order to generate a global overview of Zea mexicana transcriptome data, 3 of complement DNA (cDNA) libraries were prepared from RNA isolated from root, stem, and leave mixed tissues of Zea Mexicana from Control (24℃), Cold (4℃) and Drought (PEG2000, 20%) treatments and each teatment has two repetitions. The sequence reads that passed quality filters were merged and de novo to generate all transcripts set by Trinity with default parameter, which will be treated as reference genome. The number of paired-reads of each sample were mapped to reference genome by Bowtie software v1.1.1 and the number of mapped reads were calculated by RSEM. qRT-PCR validation was performed using BIO-RAD CFX96 sequence detection system and SYBR Green assays. Results: Using RNA-Seq technology with the Trinity assembled method, we generated a seedling plant transcriptome at a sequencing size of 51.78Gb of Zea mays ssp. mexicana L. from pooled RNA samples which included control (CK), cold (4℃) and drought (PEG2000, 20%) stressed plant samples. A total of 414,232,462 high quality clean reads were used to conduct de novo assembly and annotation of genes without reference genome information. All of these reads were assembled into 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp). A total of 3,504 up-regulated and 1,220 down-regulated genes were detected under cold stress and 532 up-regulated and 82 down-regulated genes were detected under drought stress. A Venn diagram indicated that 208 genes were affected by both cold and drought stresses. 3 cold stress pathways and 5 drought related pathways showed significant KEGG pathways. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and CBF6 gene of ICE1-CBF pathway may play important roles in the DEGs co-up-regulated by both stresses of Zea mays ssp. mexicana L. Conclusions: We analyzed transcriptome data and gene expression profile information from seedlings of Zea mays ssp. mexicana L. under cold and drought stresses. Together these data provides the most comprehensive sequence study available for Zea mays ssp. mexicana L. and provides some important functional genes and molecular mechanism information for improving the quality characteristic of maize in the future.
Project description:Maize (Zea mays L.) was hydroponically grown for 14 days and then stressed with hypoxia. Maize roots were sampled after 24 hours and analyzed by mass spectrometry.
Project description:We analyzed the nucleotide-binding leucine-rich repeat receptors (NLRs) of 26 recently sequenced diverse founder lines from the maize nested association mapping (NAM) population and compared them to the R gene complement present in a wild relative of maize, Zea luxurians.
Project description:The differentiation of specialized feeding sites in Zea mays root cells in response to nematode infestation involves substantial cellular reprogramming of host cells that is not well characterized at the molecular level. Expression data was generated from Zea mays root cells undergoing giant cell formation due to nematode infestation and from non-infested control root cells. Cells were laser captured 14 and 21 days after infestation.