Project description:Endogenous RNA-directed RNA polymerases (RdRPs) are cellular components capable of synthesizing new complementary RNAs from existing RNA templates. We present evidence for successive engagement of two different RdRPs in an endogenous siRNA-based mechanism targeting specific mRNAs in C. elegans soma. In the initiation stage of this process, a group of mRNA species are chosen as targets for downregulation, leading to accumulation of rare 26-nt 5'-phosphorylated antisense RNAs that depend on the RdRP homolog RRF-3, the argonaute ERGO-1, DICER, and a series of associated (ERI) factors. This primary process leads to production of a much more abundant class of 22-nt antisense RNAs, dependent on a secondary RdRP (RRF-1) and associating with at least one distinct Argonaute (NRDE-3). The requirement for two RdRP/Argonaute combinations and initiation by a rare class of uniquely-structured siRNAs in this pathway illustrate the caution and flexibility used as biological systems exploit the physiological copying of RNA.
Project description:In the Caenorhabditis elegans germline, thousands of mRNAs are concomitantly expressed with antisense 22G-RNAs, which are loaded into the Argonaute CSR-1. Despite their essential functions for animal fertility and embryonic development, how CSR-1 22G-RNAs are produced remains unknown. Here, we show that CSR-1 slicer activity is primarily involved in triggering the synthesis of small RNAs on the coding sequences of germline mRNAs and post-transcriptionally regulates a fraction of targets. CSR-1-cleaved mRNAs prime the RNA-dependent RNA polymerase, EGO-1, to synthesize 22G-RNAs in phase with ribosome translation in the cytoplasm, in contrast to other 22G-RNAs mostly synthesized in germ granules. Moreover, codon optimality and efficient translation antagonize CSR-1 slicing and 22G-RNAs biogenesis. We propose that codon usage differences encoded into mRNA sequences might be a conserved strategy in eukaryotes to regulate small RNA biogenesis and Argonaute targeting
Project description:Endogenous RNA-directed RNA polymerases (RdRPs) are cellular components capable of synthesizing new complementary RNAs from existing RNA templates. We present evidence for successive engagement of two different RdRPs in an endogenous siRNA-based mechanism targeting specific mRNAs in C. elegans soma. In the initiation stage of this process, a group of mRNA species are chosen as targets for downregulation, leading to accumulation of rare 26-nt 5'-phosphorylated antisense RNAs that depend on the RdRP homolog RRF-3, the argonaute ERGO-1, DICER, and a series of associated (ERI) factors. This primary process leads to production of a much more abundant class of 22-nt antisense RNAs, dependent on a secondary RdRP (RRF-1) and associating with at least one distinct Argonaute (NRDE-3). The requirement for two RdRP/Argonaute combinations and initiation by a rare class of uniquely-structured siRNAs in this pathway illustrate the caution and flexibility used as biological systems exploit the physiological copying of RNA. 24 small RNA and 2 polyA RNA samples
Project description:We applied nanoparticle packed heteroduplex RNA to paramecia in order to dissect siRNA populations being produced from exogenous dsRNA or from newly synthesized strands by different RNA dependent RNA polymerases.
Project description:Plant small RNAs (sRNAs) regulate key physiological mechanisms through post-transcriptional and transcriptional silencing of gene expression. sRNAs fall into two major categories: those that are reliant on RNA Dependent RNA Polymerases (RDRs) for biogenesis and those that aren’t. Known RDR-dependent sRNAs include phased and repeat-associated short interfering RNAs, while known RDR-independent sRNAs are primarily microRNAs (miRNAs) and other hairpin-derived sRNAs. In this study, we produced and analyzed sRNA-seq libraries produced from rdr1/rdr2/rdr6 triple mutant plants. We found 58 previously annotated MIRNA loci that were dependent on RDR function, casting doubt on their classification as MIRNAs. We also found 38 RDR-independent sRNA clusters that were not MIRNAs or otherwise hairpin-derived. These 38 sRNA loci have novel biogenesis mechanisms, and frequently arise from protein-coding genes. Altogether, our analysis suggests that these 38 sRNA loci represent one or more new types of sRNA loci in Arabidopsis thaliana.
Project description:RNA polymerases are highly regulated molecular machines. We present a method (GRO-seq) that maps the position, amount, and orientation of transcriptionally-engaged RNA polymerases genome-wide. In this method, nuclear run-on RNAs are subjected to large-scale parallel sequencing and mapped to the genome. Here, we show that peaks of promoter-proximal polymerase reside on ~30% of human genes, transcription extends beyond pre-mRNA 3M-bM-^@M-^Y cleavage, and antisense transcription is prevalent. Additionally, most promoters have an engaged polymerase upstream and in an orientation opposite to the annotated gene. This divergent polymerase is associated with active genes, but does not elongate effectively beyond the promoter. These results imply that the interplay between polymerases and regulators over broad promoter regions dictates the orientation and efficiency of productive transcription. Two biological replicates of nascent RNA sequencing