Project description:Persistent changes in brain gene expression are hypothesized to underlie thealtered neural signaling producing abusive consumption in AUD. To identify brain regional gene expression networks contributing to progressive ethanol consumption, we performed microarray and scale-free network analysis of expression responses in a C57BL/6J mouse model utilizing chronic intermittent ethanol by vapor chamber (CIE) in combination with limited access oral ethanol consumption. The interaction of CIE and oral consumption was studied with Affymetrix microarrays. Gene expression was studied in medial prefrontal cortex, nucleus accumbens, hippocampus, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain region expression networks were analyzed for ethanol-responsive gene expression, correlation with ethanol consumption and functional content using extensive bioinformatics studies.
Project description:We examined global gene expression profiles in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC) and Liver of male C57BL/6J mice exposed to 4 cycles of chronic intermittent ethanol (CIE) vapor. Animals were sacrificed at 0, 8, and 120 hr following the last ethanol exposure. Mice were exposed to 4 cycles of intermittent vapor [4 days of 16 hours vapor/ 8 hours air] with a week between each cycle. Before entry into the vapor chambers, animals were injected with pyrazole (1 mMol/kg) and either ethanol (1.6 g/kg) or saline (controls). Animals were sacrificed at 0, 8, and 120 hr following the last ethanol exposure. The liver 0 hr control group contained 7 animals. Otherwise there were 8 animals per group (treated, control) at each time point.
Project description:Purpose: Identify the specific transcriptome alterations in astrocytes and microglia isolated from mouse prefrontal cortex (PFC) following a chronic intermittent ethanol vapor exposure paradigm Methods: We performed RNA-sequencing on astrocytes, microglia, and total homogenate tissue isolated from the PFC of C57BL/6J mice following chronic intermittent ethanol vapor exposure Results: We identified common neuroimmune gene expression response between cell types in response to CIE, unique networks of correlated genes differentially expressed in specific cell types, along with candidate pathways, biological processes and highly connected cell-type specific genes Conclusions: This study sheds light on the cell-specific effects of chronic ethanol and provides novel molecular targets for understanding ethanol dependence
Project description:To better understand the molecular mechanisms underlying ethanol action we have developed an assay system to study sensitivity and fast and chronic tolerance to the sedative effects of ethanol. Flies developed fast ethanol tolerance after single exposure to 50% of ethanol vapor for 40 min. Flies can also develope chronic ethanol tolerance after 5x 40 min exposure to 50% ethanol vapor interspersed with 4x 80 min exposure to 10% ethanol vapor. We used microarray analysis to identify genes involved in the development of fast and chronic ethanol tolerance in Drosophila. More than 600 hundred genes were found to have changed their expression level in response to different ethanol treatment. Among these genes, Homer was picked for further study and is demonstrated that its expression in ellipsoid body is critical for the normal sensitivity and fast toleance to ethanol. Keywords: time course
Project description:We examined microRNA expression profiles in amygdala (AMY), nucleus accumbens (NAC) and prefrontal cortex (PFC) of male C57BL/6J mice exposed to 4 cycles of chronic intermittent ethanol (CIE) vapor. Animals were sacrificed at 0, 8, and 120 hr following the last ethanol exposure.