Project description:China produces more than 77.9% of the world's production of silver carp in 2020 with the production of 3812.9 kiloton.3 The high consumption of silver carp in China is mainly by using its edible muscles for manufacture of surimi-based seafoods or other muscle foods, which may contribute high quality protein resource and other valuable nutrients in human diets. This project is to understanding the muscle composition of slaughtered fish skeletal muscle use the proteomics methods. The proteomics was performed based on the improved DDA experiment with extensive fractionation and prolonged separation of peptides, and protein searching database was informed by the Iso-seq transcriptomics.
Project description:We applied high throughput sequencing technology to identify microRNA genes in bighead carp and silver carp. We identified 167 conserved miRNAs in bighead carp and 166 in silver carp. By two computational stragegies, we obtained 39 novel miRNAs in bighead carp and 54 in silver carp, for which, no homologs were found in other species. Several miRNA* sequences were found in our dataset as well, some particular ones might have gene regulation function. Gain and loss of family members were observed in several miRNA families, which partially reflected the fate of miRNA gene duplicates.
Project description:We applied high throughput sequencing technology to identify microRNA genes in bighead carp and silver carp. We identified 167 conserved miRNAs in bighead carp and 166 in silver carp. By two computational stragegies, we obtained 39 novel miRNAs in bighead carp and 54 in silver carp, for which, no homologs were found in other species. Several miRNA* sequences were found in our dataset as well, some particular ones might have gene regulation function. Gain and loss of family members were observed in several miRNA families, which partially reflected the fate of miRNA gene duplicates. Total RNA of juvenile bighead carp and silver carp were sequenced on one Solexa lane, respectively.
Project description:Bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), collectively called bigheaded carps, are invasive species in the Mississippi River Basin (MRB). Interspecific hybridization between bigheaded carps has been considered rare within their native rivers in China; however, it is prevalent in the MRB. We conducted de novo transcriptome analysis of pure and hybrid bigheaded carps and obtained 40,759 to 51,706 transcripts for pure, F1 hybrid, and backcross bigheaded carps. The search against protein databases resulted in 20,336-28,133 annotated transcripts (over 50% of the transcriptome) with over 13,000 transcripts mapped to 23 Gene Ontology biological processes and 127 KEGG metabolic pathways. More transcripts were detected in silver carp than in bighead carp; however, comparable numbers of transcripts were annotated. Transcriptomic variation detected between two F1 hybrids may indicate a potential loss of fitness in hybrids. The neighbor-joining distance tree constructed using over 2,500 one-to-one orthologous sequences suggests transcriptomes could be used to infer the history of introgression and hybridization. Moreover, we detected 24,792 candidate SNPs that can be used to identify different species. The transcriptomes, orthologous sequences, and candidate SNPs obtained in this study should provide further knowledge of interspecific hybridization and introgression.
Project description:Hypoxia is one of the serious stresses in fish culture, which can lead to physical and morphological changes, and cause injury and even death to fish. Silver carp (Hypophthalmichthys molitrix) is an important economic fish and widely distributed in China. MicroRNA is a kind of endogenous non-coding single-stranded small RNA, which is involved in cell development, and immune response and gene expression regulation. In this study, silver carp were kept in the closed containers for hypoxia treatment by spontaneous oxygen consumption. The samples of heart, brain, liver and gill were collected, and the total RNAs extracted separately from the four tissues were mixed in equal amounts according to the concentration. Afterwards, the RNA pool was constructed for high-throughput sequencing, and based on the small RNA sequencing, the differentially expressed microRNAs were identified. Furthermore, their target gene prediction and enrichment analyses were carried out. The results showed that a total of 229 known miRNAs and 391 putative novel miRNAs were identified, which provided valuable resources for further study on the regulatory mechanism of miRNAs in silver carp under hypoxia stress. The authors verified 16 differentially expressed miRNAs by qRT-PCR, and the results were consistent with small RNA sequencing (sRNA-seq). The predicted target genes number of differentially expressed miRNAs was 25,146. GO and KEGG functional enrichment analysis showed that these target genes were mainly involved in the adaption of hypoxia stress in silver carp through biological regulation, catalytic activity and apoptosis. This study provides references for further study of interaction between miRNAs and target genes, and the basic data for the response mechanism under hypoxia stress in silver carp.