Project description:genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett’s, 64 normal adjacent squamous and 21 normal stomach. Transcriptome data was performed for 70 samples with methylation profile (48 EAC, 4 Barrett’s and 18 normal adjacent squamous). This is the first study to use methylome, transcriptome and ENCODE data to characterize the regulatory role of methylation in EAC.
Project description:genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett’s, 64 normal adjacent squamous and 21 normal stomach. Transcriptome data was performed for 70 samples with methylation profile (48 EAC, 4 Barrett’s and 18 normal adjacent squamous). This is the first study to use methylome, transcriptome and ENCODE data to characterize the regulatory role of methylation in EAC.
Project description:Classically, there are two types of endometrial cancer, endometrioid adenocarcinoma (EAC), or Type I; and uterine papillary serous carcinoma (UPSC), or Type II. These two types of cancers exhibit distinct DNA methylation levels in promoters of many genes. In EAC, many tumor suppressor genes were silenced due to DNA hypermethylation at their promoter region. However, promoters of many of these genes remained unmethylated in UPSC. Here, we described complete DNA methylome maps of endometrioid adenocarcinoma, uterine papillary serous carcinoma, and normal endometrium, by applying a combined strategy of methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme sequencing (MRE-seq). We took a complementary and orthogonal approach to identify DNA methylation changes unique to the two endometrial cancer subtypes in an unbiased fashion. We generated complete DNA methylome maps for endometrioid adenocarcinoma (EAC, three samples), uterine papillary serous carcinomas (UPSC, three samples), and normal endometrium (pooled samples) by integrating data from methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme sequencing (MRE-seq).
Project description:We developed a new single cell sequencing method to simultaneously sequence methylome and transcriptome for mouse DRG neurons Integrative analysis of transcription and methylation at single cell level
Project description:Classically, there are two types of endometrial cancer, endometrioid adenocarcinoma (EAC), or Type I; and uterine papillary serous carcinoma (UPSC), or Type II. These two types of cancers exhibit distinct DNA methylation levels in promoters of many genes. In EAC, many tumor suppressor genes were silenced due to DNA hypermethylation at their promoter region. However, promoters of many of these genes remained unmethylated in UPSC. Here, we described complete DNA methylome maps of endometrioid adenocarcinoma, uterine papillary serous carcinoma, and normal endometrium, by applying a combined strategy of methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme sequencing (MRE-seq).
Project description:This SuperSeries is composed of the following subset Series: GSE35911: Reversal of Aberrant Cancer Methylome and Transcriptome upon Direct Reprogramming of Lung Cancer Cells [Expression] GSE35912: Reversal of Aberrant Cancer Methylome and Transcriptome upon Direct Reprogramming of Lung Cancer Cells [Methylation] Refer to individual Series