Project description:PRMT1 is thought to be responsible for the majority of PRMT activity in Toxoplasma gondii, but its exact function is unknown. We generated T. gondii mutants lacking PRMT1 (∆prmt1) by deletion of the PRMT1 gene. ∆prmt1 parasites exhibit morphological defects during cell division and grow slowly, and this phenotype reverses in the complemented strain ∆prmt::PRMT1mRFP. PRMT1 localizes primarily in the cytoplasm with enrichment at the centrosome, and the strain lacking PRMT1 is unable to segregate progeny accurately. Unlike wild-type and complemented parasites, ∆prmt1 parasites have abnormal daughter buds, perturbed centrosome stoichiometry, and loss of synchronous replication. Whole genome expression profiling demonstrated differences in expression of cell cycle regulated genes in ∆prmt1 relative to the complemented ∆prmt1::PRMT1mRFP and parental wild-type strains, but these changes did not correlate with a specific block in cell cycle. Although PRMT1’s primary biological function was previously proposed to be methylation of histones, our genetic studies suggest that the most critical function of PRMT1 is within the centrosome as a regulator of daughter cell counting to assure the proper replication of the parasite. RNA samples were isolated in triplicates from RH-hxgprt parent strain (W), PRMT1 knockout (K) strain and PRMT1 knockout strain complemented with RFP-tagged PRMT1 protein (C). Parasites were grown for 32h at 37C. Samples were hybridized to the Toxoplasma gondii Affymetrix microarray (ToxoGeneChip: http://ancillary.toxodb.org/docs/Array-Tutorial.html). Hybridization data was preprocessed with Robust Multi-array Average (RMA) and normalized using per chip and per gene median polishing and analyzed using the software package GeneSpring GX (Agilent Technologies).
Project description:PRMT1 is thought to be responsible for the majority of PRMT activity in Toxoplasma gondii, but its exact function is unknown. We generated T. gondii mutants lacking PRMT1 (∆prmt1) by deletion of the PRMT1 gene. ∆prmt1 parasites exhibit morphological defects during cell division and grow slowly, and this phenotype reverses in the complemented strain ∆prmt::PRMT1mRFP. PRMT1 localizes primarily in the cytoplasm with enrichment at the centrosome, and the strain lacking PRMT1 is unable to segregate progeny accurately. Unlike wild-type and complemented parasites, ∆prmt1 parasites have abnormal daughter buds, perturbed centrosome stoichiometry, and loss of synchronous replication. Whole genome expression profiling demonstrated differences in expression of cell cycle regulated genes in ∆prmt1 relative to the complemented ∆prmt1::PRMT1mRFP and parental wild-type strains, but these changes did not correlate with a specific block in cell cycle. Although PRMT1’s primary biological function was previously proposed to be methylation of histones, our genetic studies suggest that the most critical function of PRMT1 is within the centrosome as a regulator of daughter cell counting to assure the proper replication of the parasite.
Project description:Arginine methylation is a common posttranslational modification found on nuclear and cytoplasmic proteins that has roles in transcriptional regulation, RNA metaboolism and DNA repair. The protozoan parasite Toxoplasma gondii has a complex life cycle requiring transcriptional plasticity and has unique transcriptional regulatory pathways. Arginine methylation probably plays an important part in transcriptional regulation and splicing biology in this organism. The T. gondii genome contains five putative protein arginine methyltransferases (PRMTs), of which PRMT1 is important for cell division and growth. In order to better understand the functions of the post translational modifiction monomethyl arginine (MMA) in T. gondii we performed a proteomic analysis of monomethyl arginine (MMA) proteins in wild type and PRMT1 knockout parasites using affinity purification employing anti-MMA specific antibodies followed by mass spectrometry.
Project description:This SuperSeries is composed of the following subset Series: GSE11437: Expression QTL mapping of Toxoplasma gondii genes, Bradyzoite array GSE11514: Expression QTL mapping of Toxoplasma gondii genes, Tachyzoite array Keywords: SuperSeries Refer to individual Series
Project description:Two samples, 0hr and 72hr, were used to generate tachyzoite and bradyzoite transcriptional data from tissue-cultured Toxoplasma gondii strain Prugniaud, respectively.
Project description:We describe the cell cycle transcriptome of the Toxoplasma gondii that has emerged as a major genetic model for the study of Apicomplexa parasites. Two distinct transcriptional waves accompany the relatively simple binary replication of tachyzoite stage (endodyogeny) functionally separating conserved gene expression in the eukaryotic G1 phase from the lineage-specific expression that predominates in the parasite S phase and mitotic periods. This division of transcriptional focus closely mirrors the intimate relationship that has evolved between mitosis and building of the daughter parasites and invasion organelles. Promoter mechanisms appear to orchestrate the induction of gene expression in dividing tachyzoites with up to two dozen cell cycle AP2 factors likely acting within a transcriptional regulatory network to coordinate the parasite cell cycle transcriptome. To characterize the cell cycle transcriptome of Toxoplasma tachyzoites, we expanded a thymidine-synchrony model to isolate sufficient RNA for microarray expression studies. The ToxoGeneChip microarray (http://ancillary.toxodb.org/docs/Array-Tutorial.html) was used to measure mRNA expression in 13 duplicate samples (R0 to R12) covering 12 hours post-synchronization and nearly two tachyzoite replication cycles.
Project description:Toxoplasma gondii is an apicomplexan parasite infecting human and animals, causing huge health concerns and economic losses. However, it is unclear about the exact mechanism of T.gondii tachyzoite infected macrophage and macrophage resisted T.gondii, especially for local isolates such as TgHB1 isolated in China. Our study focused on the transcriptional difference of pig alveolar macrophages (3D4/21) infected with china isolated TgHB1 compared to TgRH and TgME49 toxoplasma gondii standard strains.
Project description:We describe the cell cycle transcriptome of the Toxoplasma gondii that has emerged as a major genetic model for the study of Apicomplexa parasites. Two distinct transcriptional waves accompany the relatively simple binary replication of tachyzoite stage (endodyogeny) functionally separating conserved gene expression in the eukaryotic G1 phase from the lineage-specific expression that predominates in the parasite S phase and mitotic periods. This division of transcriptional focus closely mirrors the intimate relationship that has evolved between mitosis and building of the daughter parasites and invasion organelles. Promoter mechanisms appear to orchestrate the induction of gene expression in dividing tachyzoites with up to two dozen cell cycle AP2 factors likely acting within a transcriptional regulatory network to coordinate the parasite cell cycle transcriptome.
Project description:Two samples, 0hr and 72hr, were used to generate tachyzoite and bradyzoite transcriptional data from tissue-cultured Toxoplasma gondii strain Prugniaud, respectively. Samples are single replicates, and a subset of a larger timeseries. Non-control sample was exposed to alkaline conditions, media pH 8.2, for 72hr.
Project description:Background: Considerable work has been carried out to understand the biology of the intermediate stages, the tachyzoite and bradyzoite, of Toxoplasma gondii in large part due to the accessible culturing methods for these stages. However, culturing methods for stages beyond the bradyzoite, including the merozoite and sexual stages, have not been developed hindering the ability to study a large portion of the parasite’s life cycle. We begin to unravel the molecular aspects of the merozoite stage focusing on gene expression. Results: To initiate this, we harvested merozoite parasites and hybridized mRNA to the Affymetrix Toxoplasma GeneChip. We analyzed the merozoite data in context of the life cycle by combining it with a previously published study that generated array data for the oocyst, tachyzoite, and bradyzoite stages (Fritz HM et al. PLoS One, 2012). Principal component analysis highlights the unique profile of the merozoite samples, placing them approximately half-way on a continuum between the tachyzoite/bradyzoite and oocyst samples. Prior studies have shown that antibodies to surface antigen p30 (SAG1) and many dense granule proteins do not label merozoites, and our microarray data confirms that these genes are not expressed at this stage. Also, the expression for many rhoptry and microneme proteins is drastically reduced while the expression for many surface antigens is increased at the merozoite stage. Gene Ontology and KEGG analysis reveals that genes involved in transcription/translation and many metabolic pathways are upregulated at the merozoite stage, highlighting unique growth requirements of this stage. We also show that an upstream promoter region of a merozoite specific gene is sufficient to control stage specific expression at the merozoite stage. Conclusion: The merozoite represents the first developmental stage within the gut of the definitive host. Determining the correct conditions that coax the parasite into the merozoite stage in vitro may allow the parasite to complete sexual development. The data presented here describe the global gene expression profile of merozoite stage and the creation of transgenic parasite strains that will be useful in unlocking how the parasite senses and responds to the felid gut environment to initiate coccidian development. The ToxoGeneChip microarray was used to measure both tachyzoite and merozoite mRNA expression in the type II TgNmBr1 strain.