Project description:Differ from the aggressive nature of HGSOC (high grade serous ovarian cancer), LGSOC (low grade serous ovarian cancer) is characterized by an early age of disease onset, slow growth pattern, and poor response to chemotherapy. To understand more specifically the underlying gene profiling discrepancy that contributes to their behavior distinction, we performed parallel gene expression profiling in 9 magnetic sorted tumor cells samples from matched primary tumors, ascites and metastases of 3 LGSOC patients as in HGSOC. By comparing the expression data among primary tumor cells, ascitic tumor cells and metastasis tumor cells, we identified a set of differential expressed genes along LGSOC progression. Further study revealed that the gene phenotype perturbance along LGSOC progression was quite different from that of HGSOC patients. We used microarrays to profile the expression of 9 matched tumor cells samples in order to identify molecular alteration between primary tumor cells, ascitic tumor cells and metastatic tumor cells in low grade serous ovarian cancer.
Project description:HGSOC, the most aggressive form of OC, is characterized by insidious onset, rapid intraperitoneal spread and development of massive ascites. Peritoneal adhesion was considered as the first step of abdominal metastasis, underscoring that only tumor cells gain access to peritoneal adherence contribute to metastasis. Studies on ovarian cancer progression were mainly focused on the primary and metastatic tumor cells, while understanding of the ascitic tumor cells is limited. We hypothesized that uncovering the gene expression profiles of ascitic tumor cells from high grade serous ovarian cancer patients will allow us to understand more specifically their unique phenotype which mediates the peritoneal adhesion. In this study, gene expression profiling was completed for 15 magnetic sorted tumor cells samples from matched primary tumors, ascites and metastases of 5 high grade serous ovarian cancer patients. By comparing the expression data from ascitic tumor cells with primary and metastasis tumor cells, we identified a set of differential expressed genes in ovarian ascitic tumor cells advantageous for peritoneal adhesion and metastasis. Further study revealed that ascites microenvironment modulated the ascitic tumor cells phenotype and contributed to ovarian cancer dissemination through facilitating CAFs in formation of compact spheroids with ascitic tumor cells. We used microarrays to profile the expression of 15 matched tumor cells samples in order to identify molecular alteration between primary tumor cells, ascitic tumor cells and metastatic tumor cells in high grade serous ovarian cancer.
Project description:Microarrays were used to examine gene expression changes in the surgical resections of high-grade serous ovarian cancer patients exhibiting clinically distinct levels of ascites volume. The present studies primary aim was to determine if there is a molecular gene expression difference between the patients presenting at time of surgery when high volumes ascites cases were compared to those with low volume ascites. The secondary aim was to determine what relevance this difference, if found, has to previously discovered molecular sub-types of high grade serous ovarian cancer. Total RNA obtained from snap-frozen stage III-IV high-grade serous ovarian cancer patients presenting with low volume (<=200 cc) or high volume (>=1000 cc) ascites volume.
Project description:Gene expression profile of tumor cells from primary tumors, ascites and metastases of high and low grade serous ovarian cancer patients
Project description:Tumor cells, macrophages and T cells from high grade serous ovarian carcinoma from the ascites of patients undergoing primary surgery were analysed without culturing (ex vivo) via obitrap.
Project description:The secretomes of tumor cells, and macrophages from high grade serous ovarian carcinoma from the ascites of patients undergoing primary surgery were analysed after 24h culture (ex vivo) via obitrap.
Project description:Microarrays were used to examine gene expression changes in the surgical resections of high-grade serous ovarian cancer patients exhibiting clinically distinct levels of ascites volume. The present studies primary aim was to determine if there is a molecular gene expression difference between the patients presenting at time of surgery when high volumes ascites cases were compared to those with low volume ascites. The secondary aim was to determine what relevance this difference, if found, has to previously discovered molecular sub-types of high grade serous ovarian cancer.
Project description:Low-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed. Low-grade ovarian serous carcinomas are believed to arise via an adenoma-serous borderline tumor-serous carcinoma sequence. In this study, we found that advanced-stage, low-grade ovarian serous carcinomas both with and without adjacent serous borderline tumor shared similar regions of loss of heterozygosity. We then analyzed 91 ovarian tumor samples for mutations in TP53, BRAF, and KRAS. TP53 mutations were not detected in any serous borderline tumors (n = 30) or low-grade serous carcinomas (n = 43) but were found in 73% of high-grade serous carcinomas (n = 18). BRAF (n = 9) or KRAS (n = 5) mutation was detected in 47% of serous borderline tumors, but among the low-grade serous carcinomas (39 stage III, 2 stage II, and 2 stage I), only one (2%) had a BRAF mutation and eight (19%) had a KRAS mutation. The low frequency of BRAF mutations in advanced-stage, low-grade serous carcinomas, which contrasts with previous findings, suggests that aggressive, low-grade serous carcinomas are more likely derived from serous borderline tumors without BRAF mutation. In addition, advanced-stage, low-grade carcinoma patients with BRAF or KRAS mutation have a better apparent clinical outcome. However, further investigation is needed. Gene expression analysis was performed on five serous borderline tumors with BRAF mutation and five serous borderline tumors without BRAF mutation randomly. RNA was extracted from microdissected tumor cells. Expression profiling was carried out with Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays
Project description:Low-grade serous ovarian carcinoma is believed to arise from serous borderline ovarian tumors, yet the progression from serous borderline tumors to low-grade serous ovarian carcinoma remains poorly understood. The purpose of this study was to identify differentially expressed genes between the two groups. Expression profiles were generated from 6 human ovarian surface epithelia (HOSE), 8 serous borderline ovarian tumors (SBOT), 13 low-grade serous ovarian carcinomas (LG), and 22 high-grade serous ovarian carcinomas (HG). The anterior gradient homolog 3 (AGR3) gene was found to be highly upregulated in serous borderline ovarian tumors; this finding was validated by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. Anti-AGR3 immunohistochemistry was performed on an additional 56 LG and 103 HG tissues and the results were correlated with clinical data. Expression profiling determined that 1254 genes were differentially expressed (P < 0.005) between SBOT, LG and HG tumors. Serous borderline ovarian tumors exhibited robust positive staining for AGR3, with a lower percentage of tumor cells stained in LG and HG. Immunofluorescence staining indicated that AGR3 expression was limited to ciliated cells. Tumor samples with a high percentage (>10%) of AGR3 positively stained tumor cells were associated with improved longer median survival in both the LG (P = 0.013) and HG (P = 0.008) serous ovarian carcinoma groups. The progression of serous borderline ovarian tumors to low-grade serous ovarian carcinoma may involve the de-differentiation of ciliated cells. AGR3 could serve as a prognostic marker for survival in patients with low-grade and high-grade serous ovarian carcinomas. Total RNA were extracted from microdissected human ovarian surface epithelia (HOSE, n=6), and microdissected serous borderline ovarian tumors (LMP, n=8), low-grade serous ovarian carcinomas (LGOSC, n=13), and 22 high-grade serous ovarian carcinomas (HGOSC, n=22). Gene Expression profiles were then generated with commercial GeneChip Human Genome U133 Plus 2.0 Array. dChip was used to identify significant differentially expressed genes between LMP/LGOSC and HGOSC