Project description:miRNA profiling of bovine satellite cells (BSC) differentiated into myotubes (6th day of in vitro differentiation). BSC isolated from m. semitendinosus of beef (Hereford & Limousine) and dairy (Holstein-Friesian) cattle. Goal was to determine differences in miRNA expresion during in vitro myogenesis in beef vs dairy cattle used as a control.
Project description:To better understand the impact of infection on oocyte quality we employed global transcriptomics of oocytes collected from heifers after receiving intrauterine infusion of pathogenic Escherichia coli and Trueperella pyogenes. We hypothesized that oocyte transcriptome would be altered in response to intrauterine infection. A total of 452 differentially expressed genes were identified in oocytes collected from heifers 4 days after bacteria infusion compared to vehicle infusion, while 539 differentially expressed genes were identified in oocytes collected from heifers 60 days after bacteria infusion. Only 42 genes were differentially expressed in bacteria infused heifers at both day 4 and day 60. Interferon, HMGB1, ILK, IL-6 and TGF-beta signaling pathways were downregulated in oocytes collected at day 4 from bacteria infused heifers, while interferon, ILK and IL-6 signaling were upregulated in oocytes collected at day 60 from bacteria infused heifers. These data suggest that bacterial infusion alters the oocyte transcriptome differently at day 4 and day 60, suggesting different follicle stages are susceptible to damage. Characterizing the long-term impacts of uterine infection on oocyte transcriptome aids in our understanding of how infection causes infertility in dairy cattle.
Project description:Over the past three decades, there has been a significant decline in dairy cattle fertility. A large proportion of pregnancy losses are believed to occur during the pre-implantation period, when the developing embryo is elongating rapidly and signaling its presence to the maternal system. The molecular mechanisms that prevent progression of the estrous cycle and allow the allogenic embryo to survive within the maternal environment are not well understood. To gain a more complete picture of these molecular events, global transcriptional profiling was performed using endometrial tissues from reproductive day 17 pregnant and non-pregnant (cycling) Holstein-Friesian dairy cattle.
Project description:The purpose of this data set was to examine the effects of excess body condition (BC) loss in dairy cattle during lactation on oocyte and cumulus cell transcriptomes. Cells were collected from dairy cattle that lost BC (L group) or maintained/gained BC (M/G group) during the first 30 days in milk (DIM).
Project description:Nitrogen (N) emissions became a huge topic under environmental and nutrient concerns in dairy farming. Nitrogen is metabolized in cows as a consequence of feed crude protein digestion which is either recycled or excreted via urine, faeces and/or milk. In dairy cows differences between cows in N-recycling and N-emissions have been postulated. This study investigated 24 Holstein dairy cows in late lactation. The experimental design comprises two dietary groups (low (LP) vs normal (NP) crude protein) and two groups of milk urea content, high (HMU) vs low (LMU). Transcriptomic profiles of the liver, rumen, mammalian gland and kidney tissues were comparatively assessed by mRNA sequencing.
Project description:Mastitis in dairy cattle can result from infection by a range of microorganisms but is principally caused by coliform bacteria and gram positive bacteria such as Staphylococcus aureus (S. aureus). The former species are often acquired by environmental contamination while S. aureus is particularly problematic due to its resistance to antibiotic treatments and ability to reside within mammary tissue in a chronic, subclinical state. The transcriptional and translational responses within bovine mammary epithelial tissue subjected to intramammary challenge with S. aureus are poorly characterised, particularly at the earliest stages of infection. A Bovine Innate Immune Microarray was employed to measure changes in gene expression occurring in bovine mammary tissues sampled from three dairy cows after a brief and graded intramammary challenge with a virulent strain of S. aureus. Keywords: dose response, disease state analysis
Project description:Mastitis in dairy cattle can result from infection by a range of microorganisms but is principally caused by coliform bacteria and gram positive bacteria such as Staphylococcus aureus (S. aureus). The former species are often acquired by environmental contamination while S. aureus is particularly problematic due to its resistance to antibiotic treatments and ability to reside within mammary tissue in a chronic, subclinical state. The transcriptional and translational responses within bovine mammary epithelial tissue subjected to intramammary challenge with S. aureus are poorly characterised, particularly at the earliest stages of infection. A Bovine Innate Immune Microarray was employed to measure changes in gene expression occurring in bovine mammary tissues sampled from three dairy cows after a brief and graded intramammary challenge with a virulent strain of S. aureus. Keywords: dose response, disease state analysis
Project description:Mastitis in dairy cattle can result from infection by a range of microorganisms but is principally caused by coliform bacteria and gram positive bacteria such as Staphylococcus aureus (S. aureus). The former species are often acquired by environmental contamination while S. aureus is particularly problematic due to its resistance to antibiotic treatments and ability to reside within mammary tissue in a chronic, subclinical state. The transcriptional and translational responses within bovine mammary epithelial tissue subjected to intramammary challenge with S. aureus are poorly characterised, particularly at the earliest stages of infection. A Bovine Innate Immune Microarray was employed to measure changes in gene expression occurring in bovine mammary tissues sampled from three dairy cows after a brief and graded intramammary challenge with a virulent strain of S. aureus. Keywords: dose response, disease state analysis
Project description:Korean peninsular weather is rapidly becoming subtropical due to global warming. In summer 2018, South Korea experienced the highest temperatures since the meteorological observations recorded in 1907. Heat stress has a negative effect on Holstein cows, the most popular breed of dairy cattle in South Korea, which is susceptible to heat. To examine physiological changes in dairy cows under heat stress conditions, we analyzed the profiles circulating microRNAs isolated from whole blood samples collected under heat stress and non-heat stress conditions using small RNA sequencing. We compared the expression profiles in lactating cows under heat stress and non-heat stress conditions to understand the regulation of biological processes in heat-stressed cows. Moreover, we measured several heat stress indicators, such as rectal temperature, milk yield, average daily gain, and progesterone concentration. All these assessments showed that pregnant cows were more susceptible to heat stress than non-pregnant cows. Particularly, progesterone concentrations known to have maternal warming effects were at similar levels in non-pregnant cows but significantly increased in pregnant cows under heat stress conditions. The differentially expressed miRNAs and their putative target genes were analyzed in pregnant cows. Interestingly, we found that differentially expressed miRNAs (bta-miR-146b, bta-miR-20b, bta-miR-29d-3p, bta-miR-1246) specifically targeted progesterone biosynthesis (StAR) and the function of corpus luteum-related genes (CCL11, XCL), suggesting that pregnant cows with elevated progesterone concentrations are more susceptible to heat stress. In addition, we found the differential expression of 11 miRNAs (bta-miR-19a, bta-miR-19b, bta-miR-30a-5p, and several from the bta-miR-2284 family) in both pregnant and non-pregnant cows under heat stress conditions. In target gene prediction and gene set enrichment analysis, these miRNAs were found to be associated with the cytoskeleton, cell junction, vasculogenesis, cell proliferation, ATP synthesis, oxidative stress, and immune responses involved in heat response. These miRNAs can be used as potential biomarkers for heat stress.
Project description:Mastitis in dairy cattle can result from infection by a range of microorganisms but is principally caused by coliform bacteria and gram positive bacteria such as Staphylococcus aureus (S. aureus). The former species are often acquired by environmental contamination while S. aureus is particularly problematic due to its resistance to antibiotic treatments and ability to reside within mammary tissue in a chronic, subclinical state. The transcriptional and translational responses within bovine mammary epithelial tissue subjected to intramammary challenge with S. aureus are poorly characterised, particularly at the earliest stages of infection. A Bovine Innate Immune Microarray was employed to measure changes in gene expression occurring in bovine mammary tissues sampled from three dairy cows after a brief and graded intramammary challenge with a virulent strain of S. aureus. This SuperSeries is composed of the SubSeries listed below.