Project description:Nitrate is both an important nutrient and a critical signaling molecule that regulates plant metabolism, growth, and development. Although several components of the nitrate signaling pathway have been identified, the molecular mechanism of nitrate signaling remains unclear. Here, we showed that the growth-related transcription factors HBI1 and its three closest homologs (HBIs) positively regulate nitrate signaling in plants. HBI1 is rapidly induced by nitrate through NLP6 and NLP7, which are master regulators of nitrate signaling pathway. Mutations in HBIs result in the reduced effects of nitrate on plant growth and approximately 22% nitrate-responsive genes no longer to be regulated by nitrate. HBIs increase the expression levels of a set of antioxidant genes to reduce the accumulation of reactive oxygen species (ROS) in plants. Nitrate treatment induces the nuclear localization of NLP7, whereas such promoting effects of nitrate are significantly impaired in the hbi-q and cat2cat3 mutants, which accumulate high levels of H2O2. These results demonstrate that HBI-mediated ROS homeostasis regulates nitrate signal transduction through modulating the nucleocytoplasmic shuttling of NLP7. Overall, our findings reveal that nitrate treatment reduces the accumulation of H2O2, and H2O2 inhibits nitrate signaling, thereby forming a feedback regulatory loop to regulate plant growth and development.
Project description:The hormone abscisic acid (ABA) regulates many plant stress responses and plant development by activating a complex gene regulatory network. This time series experiment was designed to unravel the architecture and dynamics of the ABA gene regulatory network.
Project description:The hormone abscisic acid (ABA) regulates many plant stress responses and plant development by activating a complex gene regulatory network. This time series experiment was designed to unravel the architecture and dynamics of the ABA gene regulatory network.
Project description:Transcriptomic analysis in response to Botrytis cinerea infections under conrasting nitrate regime Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants. To better understand the molecular changes underlying the impact of nitrate availability on plant susceptibility to B. cinerea, we performed plant transcriptome profiling assays on mock-treated (3 biological replicates) and infected plants ( 3 biological replicates) grown under three N conditions, using GeneChip Tomato Genome Arrays (Affymetrix).
Project description:Identification of the earliest transcriptional responses of adult Arabidopsis plant roots towards N-deprivation. Hydroponically grown Plants (35 days old) were 5 days adapted to nitrate or ammonium,respectively, as sole N-source to detect N-form specific transcripts.
Project description:Expression profiles of 22 reference Arabidopsis immunity mutants were collected using the Arabidopsis Pathoarray 464_001 (GPL3638) in order to build a network model predicting the Arabidopsis immune signaling network. Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. Here, we demonstrate that use of mRNA profiling to collect and analyze detailed descriptions of changes in the network state resulting from specific network perturbations is a powerful and economical strategy to elucidate regulatory relationships among the components of a complex signaling network. Specifically, we studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with the Pto DC3000 AvrRpt2 and used as detailed descriptions of the network states resulting from specific genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting network model accurately predicted 22 of 23 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; (ii) negative regulatory relationships are common between signaling sectors. One case of a novel negative regulatory relationship, between the early microbe-associated molecular pattern (MAMP)-activated sector and the salicylic acid (SA)-mediated sector, was further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector-switching" network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. Keywords: Responses of reference Arabidopsis immunity mutants to Pseudomonas syringae pv. tomato DC3000 carrying avrRpt2 This experiment consists of two (group00) or three (group01-04) biological replicates of each genotype (total 25 genotypes [3 are multiple mutants, which were removed for the network modeling, but were used for normalization]). For each genotype, two leaves per plant were pooled from three pots to prepare total RNA.
Project description:GSH, being a versatile molecule, is actively involved in various bilogical processe of plant system. Our previous studies identifies an active role of GSH in plant defense signaling network. Here, we used microarray under GSH treated condition to obtain a global expression profiling under this altered GSH conditions.
Project description:Transcriptomic analysis in response to Botrytis cinerea infections under conrasting nitrate regime Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.