Project description:Expression profiles of 22 reference Arabidopsis immunity mutants were collected using the Arabidopsis Pathoarray 464_001 (GPL3638) in order to build a network model predicting the Arabidopsis immune signaling network. Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. Here, we demonstrate that use of mRNA profiling to collect and analyze detailed descriptions of changes in the network state resulting from specific network perturbations is a powerful and economical strategy to elucidate regulatory relationships among the components of a complex signaling network. Specifically, we studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with the Pto DC3000 AvrRpt2 and used as detailed descriptions of the network states resulting from specific genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting network model accurately predicted 22 of 23 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; (ii) negative regulatory relationships are common between signaling sectors. One case of a novel negative regulatory relationship, between the early microbe-associated molecular pattern (MAMP)-activated sector and the salicylic acid (SA)-mediated sector, was further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector-switching" network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. Keywords: Responses of reference Arabidopsis immunity mutants to Pseudomonas syringae pv. tomato DC3000 carrying avrRpt2 This experiment consists of two (group00) or three (group01-04) biological replicates of each genotype (total 25 genotypes [3 are multiple mutants, which were removed for the network modeling, but were used for normalization]). For each genotype, two leaves per plant were pooled from three pots to prepare total RNA.
Project description:Expression profiles of 22 reference Arabidopsis immunity mutants were collected using the Arabidopsis Pathoarray 464_001 (GPL3638) in order to build a network model predicting the Arabidopsis immune signaling network. Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. Here, we demonstrate that use of mRNA profiling to collect and analyze detailed descriptions of changes in the network state resulting from specific network perturbations is a powerful and economical strategy to elucidate regulatory relationships among the components of a complex signaling network. Specifically, we studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2). This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with the Pto DC3000 AvrRpt2 and used as detailed descriptions of the network states resulting from specific genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting network model accurately predicted 22 of 23 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i) the components of the network are highly interconnected; (ii) negative regulatory relationships are common between signaling sectors. One case of a novel negative regulatory relationship, between the early microbe-associated molecular pattern (MAMP)-activated sector and the salicylic acid (SA)-mediated sector, was further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector-switching" network, which effectively balances two apparently conflicting demands, robustness against pathogenic perturbations and moderation of negative impacts of immune responses on plant fitness. Keywords: Responses of reference Arabidopsis immunity mutants to Pseudomonas syringae pv. tomato DC3000 carrying avrRpt2
Project description:In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana, ecotype Columbia-0) to a crop, rice (Oryza sativa spp. japonica (Nipponbare)), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants.
Project description:Heterotrimeric G proteins mediate crucial and diverse signaling pathways in eukaryotes. To gain insights into the regulatory modes of the G protein and the co-regulatory modes of the G protein and the stress hormone abscisic acid (ABA), we generated and analyzed gene expression in G protein subunit single and double mutants of the model plant Arabidopsis thaliana. Through a Boolean modeling approach, our analysis reveals novel modes of heterotrimeric G protein action. Keywords: transcriptome analysis; G protein subunit mutants; abscisic acid (ABA)
Project description:The goal of this work is to identify the gene regulatory hubs that control nitrogen-use in Oryza sativa, one of the most important crop plants, by using a combination of genomics, bioinformatics and systems biology approaches. Here, we evaluate the role of bZIP1, a transcription factor involved in light and nitrogen sensing, by exposing wild-type (WT) and bZIP1 T-DNA null mutant plants to a combinatorial space of N and L treatment conditions. We use ANOVA analysis combined with clustering and Boolean modeling, to evaluate the role of bZIP1 in mediating L and N signaling genome-wide. We also study the interspecies conservation, comparing rice with Arabidopsis thaliana nitrogen transcriptomes, to help identify conserved nitrogen regulation.