Project description:An expert-pathologist-reviewed epithelial ovarian cancer reference library (n = 50) used to assign the histopathology of epithelial ovarian cell lines using compositional statistics and random gene-sets
Project description:Compositional statistics and random gene-sets were used to assign the tumor site of origin and histopathology of 18 epithelial ovarian cancer cell lines
Project description:We propose a statistical algorithm MethylPurify that uses regions with bisulfite reads showing discordant methylation levels to infer tumor purity from tumor samples alone. With purity estimate, MethylPurify can identify differentially methylated regions (DMRs) from individual tumor samples without genomic variation information or prior knowledge from other datasets. In simulations with mixed bisulfite reads from cancer and normal cell lines, MethylPurify correctly inferred tumor purity and identified over 96% of the DMRs. On real patient data where tumor to normal comparison were used as golden standard, MethylPurify called DMR from tumor samples alone at over 57% sensitivity and 91% specificity.
Project description:Derivation of embryonic stem cells (ESC) genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing any immunorejection issues. However, no primate nuclear transfer embryonic stem (ntES) cell lines have been derived to date. Here, we used a modified SCNT technique to produce rhesus macaque SCNT blastocysts at a relatively high efficiency from adult donor cells and we successfully derived two primate ntES cell lines from 304 oocytes (an overall efficiency of 0.7%). Nuclear and mitochondrial DNA analysis confirmed the ntES cell lines were derived from rhesus monkey SCNT blastocysts and both rhesus monkey ntES cell lines exhibited a normal ESC morphology, expressed key stemness markers, were transcriptionally indistinguishable from control ESC lines and differentiated into multiple cell types. This is, to our knowledge, the first confirmed derivation of primate ntES cell lines. Keywords: rhesus monkey somatic cell nuclear transfer embryonic stem cells
Project description:The identity and functions of specialized cell types are dependent on the complex interplay between signaling and transcriptional networks. Recently single-cell technologies such as CITE-seq have been developed that enable simultaneous quantitative analysis of cell-surface receptor expression with transcriptional states. To date, these datasets have not been used to systematically develop cell-context-specific maps of the interface between signaling and transcriptional regulators orchestrating cellular identity and function. We present SPaRTAN (Single-cell Proteomic and RNA based Transcription factor Activity Network), a computational method to link cell-surface receptors to transcription factors (TFs) by exploiting cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) datasets with cis-regulatory information. SPaRTAN is applied to immune cell types in the blood to predict the coupling of signaling receptors with cell context-specific TFs. The predictions are validated by prior knowledge and flow cytometry analyses. SPaRTAN is then used to predict the signaling coupled TF states of tumor infiltrating CD8+ T cells in malignant peritoneal and pleural mesotheliomas. SPaRTAN greatly enhances the utility of CITE-seq datasets to uncover TF and cell-surface receptor relationships in diverse cellular states.
Project description:Starting with our early global expression analyses of TCDD-treated human hepatoma cells {Puga, 2000 4679 /id}, the AHR transcriptional induction profile has been extensively studied, whether activated by TCDD, B[a]P or in the absence of exogenous ligands (reviewed in {Frericks, 2007 5618 /id}). In addition to using prior knowledge to integrate expression profiles into the AHR gene target network, we performed a new set of expression profile analyses of wild type Hepa-1c1c7 and c35 cell lines and compared the responses in naïve cells with responses in TCDD or B[a]P exposed cells for 8 hours. Results of our expression array studies are in close agreement with current knowledge.
Project description:We have generated human induced Pluripotent Stem cells (hiPSc) using Sendai virus-mediated delivery of reprogramming factors. hiPSc lines have been screened using SNP array to assess chromosomal stability (alongside the fibroblast lines from which they derived), and validation of the pluripotency of the hiPSc lines is provided by Pluritest assessment of transcriptome datasets, prior to differentiation and downstream assays. Excess α-synuclein compromises phagocytosis in iPSC-derived macrophages.
Project description:We have generated human induced Pluripotent Stem cells (hiPSc) from Parkinson's Disease patients, using retrovirus-mediated delivery of reprogramming factors. hiPSc lines have been screened using SNP array to assess chromosomal stability (alongside the fibroblast lines from which they derived), and validation of the pluripotency of the hiPSc lines is provided by Pluritest assessment of transcriptome datasets, prior to differentiation to dopaminergic neuronal clutures and downstream functional assays.