Project description:Bone morphogenetic proteins (BMPs) are transforming growth factor β (TGFβ) family members that regulate the post-implantation and mid-gestation stages of pregnancy. In this study we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. To understand the role of ALK3 in the luminal uterine epithelium, we obtained the gene expression profiles of isolated luminal uterine epithelium from 3.5dpc control and Alk3 cKO mice. Gene expression profiling of isolated luminal uterine epithelium from control and Alk3 cKO mice. two group comparison
Project description:Bone morphogenetic proteins (BMPs) are transforming growth factor β (TGFβ) family members that regulate the post-implantation and mid-gestation stages of pregnancy. In this study we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. To understand the role of ALK3 in the luminal uterine epithelium, we obtained the gene expression profiles of isolated luminal uterine epithelium from 3.5dpc control and Alk3 cKO mice.
Project description:We used the microarray analysis to determine the differential gene expression profiles in mouse uterine luminal epithelium between preimplantation gestation day 3.5 and postimplantation gestation day 4.5, and investigeate the molecular mechanism of the establishment of uterine receptivity and embryo implantation. Uterine luminal epithelium (LE) is critical for the establishment of uterine receptivity during embryo implantation. Many genes are known to have differential expression in the periimplantation LE but the global profiling of the altered genes in the periimplantation LE is unknown. To fill in this knowledge gap, microarray analysis was performed in gestation day 3.5 (D3.5, preimplantation) and D4.5 (postimplantation) mouse LE from natural pregnancy. There were 382 significantly upregulated and 245 significantly downregulated genes (>2 fold, P<0.05) in the D4.5 LE. There are 6 samples. 3 for gestation day 3.5 uterine luminal epithelium, the other 3 for gestation day 4.5 uterine luminal epithelium
Project description:We used the microarray analysis to determine the differential gene expression profiles in mouse uterine luminal epithelium between preimplantation gestation day 3.5 and postimplantation gestation day 4.5, and investigeate the molecular mechanism of the establishment of uterine receptivity and embryo implantation. Uterine luminal epithelium (LE) is critical for the establishment of uterine receptivity during embryo implantation. Many genes are known to have differential expression in the periimplantation LE but the global profiling of the altered genes in the periimplantation LE is unknown. To fill in this knowledge gap, microarray analysis was performed in gestation day 3.5 (D3.5, preimplantation) and D4.5 (postimplantation) mouse LE from natural pregnancy. There were 382 significantly upregulated and 245 significantly downregulated genes (>2 fold, P<0.05) in the D4.5 LE.
Project description:Embryo implantation into a receptive endometrium is tightly regulated by a variety of maternal factors, including cytokines, growth factors and transcription factors. Previous studies identified the leukaemia inhibitory factor (LIF), produced in uterine glands, as an essential factor for implantation. It was shown that LIF acts via its cell surface receptor to activate the transcription factor STAT3 in the uterine epithelial cells. However, the mechanisms via which STAT3 promotes uterine receptivity remain unknown. To address the molecular pathways regulated by STAT3 in the uterus, we created mice in which Stat3 gene is conditionally inactivated in uterine epithelium. These mutant mice are infertile due to implantation failure and exhibit a lack of embryo attachment to the luminal epithelium. Gene expression profiling of the epithelial tissue impaired in STAT3 activation revealed dysregulated expression of specific components of junctional complexes, including E-cadherin, M-NM-2-catenin, and claudins, which critically regulate epithelial cell polarity and embryo attachment. Additionally, mice lacking functional epithelial STAT3 showed markedly reduced stromal proliferation and differentiation, indicating that this transcription factor controls stromal function via a paracrine mechanism. The stromal defect arose from a drastic reduction in the production of several members of the epidermal growth factor (EGF) family in luminal epithelium of mutant uteri and consequent lack of activation of EGF receptor signaling and mitotic activity in the stromal cells. Collectively, our results uncovered intricate signaling networks operating downstream of STAT3 in uterine epithelium that regulate epithelial cell polarity, and stromal proliferation and differentiation, which are critical determinants of successful implantation. To identify the downstream targets of STAT3 in mouse uterine epithelial cells during pregnancy, we performed gene expression profling of mouse uterine epithelial cells on day 4 of pregnancy between Stat3 flox control and SW d/d mice. This led to the identification of several junctional molecules (Claudins and Catenins) that are negatively regulated by STAT3 at the time of implantation. Mouse uteirne epithelial cells were isolated from control and knockout mice on the morning of day 4 of pregnancy. (n=3 for each sample), pooled total RNA from these cells was then hybridized to high density affymetrix microarrays according to the Affymetrix protocol (Mouse Genome 430A 2.0 Array) .
Project description:Postnatal development of the uterus involves specification of undifferentiated epithelium into uterine-type epithelium. That specification is regulated by stromal-epithelial interactions as well as intrinsic cell-specific transcription factors and gene regulatory networks. This study utilized mouse genetic models of Esr1 deletion, endometrial epithelial organoids (EEO), and organoid-stromal co-cultures to decipher the role of Esr1 in uterine epithelial development. Organoids derived from wild-type (WT) mice developed a normal single layer of columnar epithelium. In contrast, EEO from Esr1 null mice developed a multilayered stratified squamous type of epithelium with basal cells. Co-culturing Esr1 null epithelium with WT uterine stromal fibroblasts inhibited basal cell development. Of note, estrogen treatment of EEO-stromal co-cultures and Esr1 conditional knockout mice increased basal epithelial cell markers. Collectively, these findings suggest that Esr1 regulates uterine epithelium lineage plasticity and homeostasis and loss of ESR1 promotes altered luminal-to-basal differentiation driven by ESR1-mediated paracrine factors from the stroma.
Project description:To investigate the influecne of BMP signaling on Gli1+ cells, RNA-seq were performed after Smad4 or Alk3 knockout. Next, RNA-seq of Muc2-mCherry cells were performed to reveal the regulation of Gli1+ cell on intestinal epithelium. Finally, RNA-seq of colonic organoids were performed to reveal the regulation of IL-1 or IL-17 on epithelium. To investigate the influecne of BMP signaling on Gli1+ cells, RNA-seq were performed after Smad4 or Alk3 knockout. Next, RNA-seq of Muc2-mCherry cells were performed to reveal the regulation of Gli1+ cell on intestinal epithelium. Finally, RNA-seq of colonic organoids were performed to reveal the regulation of IL-1 or IL-17 on epithelium.