Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.
Project description:Two lineages of enterohemorrhagic (EHEC) Escherichia coli O157:H7 (EDL933, Stx1+ and Stx2+) and 86-24 (Stx2+) were investigated in regards to biofilm formation on an abiotic surface. Strikingly, EDL933 strain formed a robust biofilm while 86-24 strain formed no biofilm on either a polystyrene plate or a polyethylene tube. To identify the genetic mechanisms of different biofilm formation in two EHEC strains, DNA microarrays were first performed and phenotypic assays were followed. In the comparison of the EDL933 strain versus 86-24 strain, genes (csgBAC and csgDEFG) involved in curli biosynthesis were significantly induced while genes (trpLEDCB and mtr) involved in indole signaling were repressed. Additionally, a dozen of phage genes were differentially present between two strains. Curli assays using a Congo red plate and scanning electron microscopy corroborate the microarray data as the EDL 933 strain produces a large amount of curli, while 86-24 forms much less curli. Also, the indole production in the EDL933 was 2-times lower than that of 86-24. It was known that curli formation positively regulates and indole negatively regulates biofilm formation of EHEC. Hence, it appears that less curli formation and high indole production in the 86-24 strain are majorly responsible for no biofilm formation.
Project description:In this study the transcriptional response of an ExPEC E. coli strain (CFT073) to human serum was investigated. In response, CFT073 up-regulated expression of iron and manganese acquisition systems and induced expression of iron regulated genes. High osmolarity of serum induced the osmotic shock response genes, promoting uptake of osmoprotectants by CFT073. Resistance of CFT073 to the bactericidal properties of serum involved increased expression of envelope stress regulators including CpxR, ?E and RcsB. Many of the up-regulated genes induced by active serum were regulated by the Rcs two component system. This system is triggered by envelope stress such as changes to cell wall integrity. RcsB-mediated serum resistance was conferred through induction of the exopolysaccharide colanic acid. Production of this exopolysaccharide may be protective while cell wall damage caused by serum components is repaired. Experimental Design: Two experiments are reported: 1) . The transcriptome of E. coli CFT073 exposed to LB supplemented with 50 % normal human serum was compared to that of bacteria grown in LB alone for 45 min, and 2) The transcriptome of CFT073 in response to normal healthy serum and heat inactivated serum (which has no bactericidal activity). Four biological replicates were performed per experiment with Dye swaps performed on sample replicates to eliminate any dye bias
Project description:To get a high resolution understanding of the effect of Fur on global gene expression, we compared by high-resolution RNAseq the transcriptomes of a wild-type E. coli K-12 strain and its Fur deletion derivative grown in minimal medium with or without supplementation of iron. Three independent total RNA extraction and RNAseq assays were performed for each strain in each condition.
Project description:Two lineages of enterohemorrhagic (EHEC) Escherichia coli O157:H7 (EDL933, Stx1+ and Stx2+) and 86-24 (Stx2+) were investigated in regards to biofilm formation on an abiotic surface. Strikingly, EDL933 strain formed a robust biofilm while 86-24 strain formed no biofilm on either a polystyrene plate or a polyethylene tube. To identify the genetic mechanisms of different biofilm formation in two EHEC strains, DNA microarrays were first performed and phenotypic assays were followed. In the comparison of the EDL933 strain versus 86-24 strain, genes (csgBAC and csgDEFG) involved in curli biosynthesis were significantly induced while genes (trpLEDCB and mtr) involved in indole signaling were repressed. Additionally, a dozen of phage genes were differentially present between two strains. Curli assays using a Congo red plate and scanning electron microscopy corroborate the microarray data as the EDL 933 strain produces a large amount of curli, while 86-24 forms much less curli. Also, the indole production in the EDL933 was 2-times lower than that of 86-24. It was known that curli formation positively regulates and indole negatively regulates biofilm formation of EHEC. Hence, it appears that less curli formation and high indole production in the 86-24 strain are majorly responsible for no biofilm formation. For the microarray experiments, E. coli O157:H7 EDL933 and 86-24 were inoculated in 25 ml of LB in 250 ml shake flasks with overnight cultures that were diluted 1:100. Cells were shaken at 250 rpm and 37°C for an absorbance of 4.0 at 600 nm. Cells were immediately chilled with dry ice and 95% ethanol (to prevent RNA degradation) for 30 sec before centrifugation in 50 ml centrifuge tubes at 13,000 g for 2 min; cell pellets were frozen immediately with dry ice and stored -80°C. RNA was isolated using Qiagen RNeasy mini Kit (Valencia, CA, USA). RNA quality was assessed by Agilent 2100 bioanalyser using the RNA 6000 Nano Chip (Agilent Technologies, Amstelveen, The Netherlands), and quantity was determined by ND-1000 Spectrophotometer (NanoDrop Technologies, Inc., DE, USA).
Project description:MgrR is a newly characterized Hfq dependent small RNA RNA. The expression of MgrR is regulated by Two component system, PhoPQ regulon, which senses low Mg2+ in environment. It has been reported that Hfq-binding sRNAs base pair with target RNAs, frequently leading to rapid degradation of target messages or, less frequently, to stabilization, both of which can be assayed by using microarrays. In order to search for the target genes of MgrR, we therefore examined the consequences of MgrR expression on mRNA abundance under two conditions. In condition 1, the chromosomal copy of mgrR was deleted and MgrR was expressed for 15’ from an induced plac-mgrR plasmid and compared to cells carrying a vector induced for the same period. In condition 2, the expression of mRNAs was compared in wild-type cells (mgrR+) and the mgrR deletion strain, both grown in LB; because MgrR levels are fairly high under our normal growth conditions, this allowed analysis of both the direct and indirect (long-term) effects of MgrR.
Project description:Enzyme IIANtr (encoded by ptsN gene) is a component of the nitrogen phosphotransferase system (PTS). It has previously been shown that the dephosphorylated form of EIIANtr is required for the derepression of ilvBN encoding acetohydroxy acid synthase I (AHAS I) catalyzing the first step common to biosynthesis of branched-chain amino acids. Here we examine the effect of deletion of ptsN gene on global gene expression by microarray analysis. Most of the genes down-regulated in a ptsN mutant are controlled by sigma 70, while all the up-regulated genes are controlled by sigma S. As intracellular levels of sigma factors in the ptsN mutant were similar to those of the wild-type strain, this implied that the balance of sigma activities is modified by ptsN deletion.