Project description:Burkholderia pseudomallei is the causative agent of melioidosis a disease endemic in South-East Asia and Northern Australia. The mortality rates in these areas are unacceptably high even with antibiotic treatment, attributed to intrinsic and acquired resistance of B. pseudomallei to antibiotics. With very few options for therapeutics there is an urgent requirement to identify anti-bacterial targets for the development of novel, effective treatments. In this study we examine the role and effect of ppiB on the proteome. Using LFQ analysis we show loss of ppiB has dramatic effect on the Burkholderia pseudomallei proteome.
Project description:Burkholderia pseudomallei is the causative agent of melioidosis which is endemic to Southeast Asia and Northern Australia. It is a Gram-negative soil and water bacterium that represents a potential bioterrorism threat. Colony morphology variation is a remarkable feature in primary clinical cultures of B. pseudomallei. Differences in expression of several potential virulence and survival genes were believed to be associated with B. pseudomallei colony morphology variants. Microarrray approach was used to investigate alterations of the global B. pseudomallei transcriptome profile at the mid-logarithmic phase of growth, among the wild type (WT) and small colony variant (SCV) of B. pseudomallei pre- and post-exposed to human lung epithelial cells, A549. Generally, SCV pre- and post-exposed have lower metabolic requirements and consume lesser energy than WT pre- and post-exposed to A549; however, both WT and SCV may limit their metabolic activity during the infection of A549 cells and this is indicated by the down-regulation of genes implicated in metabolism of amino acids, carbohydrate, lipid, and other amino acids, and biodegradation of xenobiotics. On the other hand, many well-known virulence and survival factors including T3SS, T6SS, fimbriae, capsular polysaccharides, drug resistance and stress response were up-regulated in both WT and SCV pre- and post-exposed to A549 cells. Several virulence factors expressed at the mid-logarithmic phase of growth. Microarray analysis on the different morphotypes demonstrated the essential difference in bacterial response associated with virulence and survival pre- and post-exposed to A549 cells.