Project description:In higher eukaryotes, an important mechanism to tune translation in different tissues and conditions is mTORC1-dependent regulation of tRNAs transcription by RNA polymerase III (Pol III), as the relative amount of tRNAs tightly coordinates with the translational needs of the cell. mTORC1 contributes to regulate protein synthesis through its direct substrate MAF1, which functions as a negative regulator of Pol III transcription in response to stimuli such as serum starvation or rapamycin treatment. Here, we applied ChIP-seq to examine the Pol III occupancy profile in human fibroblasts and report evidence of a genome wide, MAF1-dependent coordinated response to favorable or stress growth conditions. Strikingly, while a set of genes is extremely responsive in terms of Pol III binding, other genes are mostly unperturbed, yet associated with transcriptionally engaged polymerases as revealed by nascent EU-labeled RNA-seq (neuRNA-seq). As shown by DamIP-seq, the responsiveness of a subset of genes is tightly connected to the rapid and transient interaction of MAF1 with DNA-bound Pol III. We performed duplicate ChIP-seq experiments for the Rpc4 (POLR3D) subunit of RNA polymerase III in IMR90hTert cells grown in the presence of fetal bovine serum (FBS), serum starved (SS), serum starved and treated with insulin (SS+I), serum starved and treated with insulin and rapamycin (SS+R+I). Additional ChIP-seq profiles were generated in cells treated with MAF1 siRNAs and serum starved. MAF1 binding was addressed by DamIP-seq, using two replicates per clone of IMR90hTert cells expressing HA-tagged MAF1-DamK9A (2 different clones) or EGFP-DamK9A (2 different clones). To monitor dynamic transcription profiles we did neusRNA-seq in IMR90hTert cells EU-labeled or mock (DMSO)-labeled. For both DamIP-seq and neusRNA-seq, cells were either unperturbed or serum starved.
Project description:In higher eukaryotes, an important mechanism to tune translation in different tissues and conditions is mTORC1-dependent regulation of tRNAs transcription by RNA polymerase III (Pol III), as the relative amount of tRNAs tightly coordinates with the translational needs of the cell. mTORC1 contributes to regulate protein synthesis through its direct substrate MAF1, which functions as a negative regulator of Pol III transcription in response to stimuli such as serum starvation or rapamycin treatment. Here, we applied ChIP-seq to examine the Pol III occupancy profile in human fibroblasts and report evidence of a genome wide, MAF1-dependent coordinated response to favorable or stress growth conditions. Strikingly, while a set of genes is extremely responsive in terms of Pol III binding, other genes are mostly unperturbed, yet associated with transcriptionally engaged polymerases as revealed by nascent EU-labeled RNA-seq (neuRNA-seq). As shown by DamIP-seq, the responsiveness of a subset of genes is tightly connected to the rapid and transient interaction of MAF1 with DNA-bound Pol III. We performed duplicate ChIP-seq experiments for the Rpc4 (POLR3D) subunit of RNA polymerase III in IMR90hTert cells grown in the presence of fetal bovine serum (FBS), serum starved (SS), serum starved and treated with insulin (SS+I), serum starved and treated with insulin and rapamycin (SS+R+I). Additional ChIP-seq profiles were generated in cells treated with MAF1 siRNAs and serum starved. MAF1 binding was addressed by DamIP-seq, using two replicates per clone of IMR90hTert cells expressing HA-tagged MAF1-DamK9A (2 different clones) or EGFP-DamK9A (2 different clones). To monitor dynamic transcription profiles we did neusRNA-seq in IMR90hTert cells EU-labeled or mock (DMSO)-labeled. For both DamIP-seq and neusRNA-seq, cells were either unperturbed or serum starved.
Project description:In higher eukaryotes, an important mechanism to tune translation in different tissues and conditions is mTORC1-dependent regulation of tRNAs transcription by RNA polymerase III (Pol III), as the relative amount of tRNAs tightly coordinates with the translational needs of the cell. mTORC1 contributes to regulate protein synthesis through its direct substrate MAF1, which functions as a negative regulator of Pol III transcription in response to stimuli such as serum starvation or rapamycin treatment. Here, we applied ChIP-seq to examine the Pol III occupancy profile in human fibroblasts and report evidence of a genome wide, MAF1-dependent coordinated response to favorable or stress growth conditions. Strikingly, while a set of genes is extremely responsive in terms of Pol III binding, other genes are mostly unperturbed, yet associated with transcriptionally engaged polymerases as revealed by nascent EU-labeled RNA-seq (neuRNA-seq). As shown by DamIP-seq, the responsiveness of a subset of genes is tightly connected to the rapid and transient interaction of MAF1 with DNA-bound Pol III. We performed duplicate ChIP-seq experiments for the Rpc4 (POLR3D) subunit of RNA polymerase III in IMR90hTert cells grown in the presence of fetal bovine serum (FBS), serum starved (SS), serum starved and treated with insulin (SS+I), serum starved and treated with insulin and rapamycin (SS+R+I). Additional ChIP-seq profiles were generated in cells treated with MAF1 siRNAs and serum starved. MAF1 binding was addressed by DamIP-seq, using two replicates per clone of IMR90hTert cells expressing HA-tagged MAF1-DamK9A (2 different clones) or EGFP-DamK9A (2 different clones). To monitor dynamic transcription profiles we did neusRNA-seq in IMR90hTert cells EU-labeled or mock (DMSO)-labeled. For both DamIP-seq and neusRNA-seq, cells were either unperturbed or serum starved.
Project description:In higher eukaryotes, an important mechanism to tune translation in different tissues and conditions is mTORC1-dependent regulation of tRNAs transcription by RNA polymerase III (Pol III), as the relative amount of tRNAs tightly coordinates with the translational needs of the cell. mTORC1 contributes to regulate protein synthesis through its direct substrate MAF1, which functions as a negative regulator of Pol III transcription in response to stimuli such as serum starvation or rapamycin treatment. Here, we applied ChIP-seq to examine the Pol III occupancy profile in human fibroblasts and report evidence of a genome wide, MAF1-dependent coordinated response to favorable or stress growth conditions. Strikingly, while a set of genes is extremely responsive in terms of Pol III binding, other genes are mostly unperturbed, yet associated with transcriptionally engaged polymerases as revealed by nascent EU-labeled RNA-seq (neuRNA-seq). As shown by DamIP-seq, the responsiveness of a subset of genes is tightly connected to the rapid and transient interaction of MAF1 with DNA-bound Pol III.
Project description:In higher eukaryotes, an important mechanism to tune translation in different tissues and conditions is mTORC1-dependent regulation of tRNAs transcription by RNA polymerase III (Pol III), as the relative amount of tRNAs tightly coordinates with the translational needs of the cell. mTORC1 contributes to regulate protein synthesis through its direct substrate MAF1, which functions as a negative regulator of Pol III transcription in response to stimuli such as serum starvation or rapamycin treatment. Here, we applied ChIP-seq to examine the Pol III occupancy profile in human fibroblasts and report evidence of a genome wide, MAF1-dependent coordinated response to favorable or stress growth conditions. Strikingly, while a set of genes is extremely responsive in terms of Pol III binding, other genes are mostly unperturbed, yet associated with transcriptionally engaged polymerases as revealed by nascent EU-labeled RNA-seq (neuRNA-seq). As shown by DamIP-seq, the responsiveness of a subset of genes is tightly connected to the rapid and transient interaction of MAF1 with DNA-bound Pol III.
Project description:In higher eukaryotes, an important mechanism to tune translation in different tissues and conditions is mTORC1-dependent regulation of tRNAs transcription by RNA polymerase III (Pol III), as the relative amount of tRNAs tightly coordinates with the translational needs of the cell. mTORC1 contributes to regulate protein synthesis through its direct substrate MAF1, which functions as a negative regulator of Pol III transcription in response to stimuli such as serum starvation or rapamycin treatment. Here, we applied ChIP-seq to examine the Pol III occupancy profile in human fibroblasts and report evidence of a genome wide, MAF1-dependent coordinated response to favorable or stress growth conditions. Strikingly, while a set of genes is extremely responsive in terms of Pol III binding, other genes are mostly unperturbed, yet associated with transcriptionally engaged polymerases as revealed by nascent EU-labeled RNA-seq (neuRNA-seq). As shown by DamIP-seq, the responsiveness of a subset of genes is tightly connected to the rapid and transient interaction of MAF1 with DNA-bound Pol III.
Project description:RNA polymerase (pol) III transcribes a variety of small untranslated RNAs that are involved in essential cellular processes that include transcription, RNA processing, and translation. RNA pol III and its components are altered in various human developmental disorders, yet their roles in cell fate determination and development are poorly understood. Here we demonstrate that Maf1, a transcriptional repressor, promotes induction of mouse embryonic stem cells into mesoderm and their terminal differentiation into adipocytes. Reduced Maf1 expression in preadipocytes impairs adipogenesis while ectopic Maf1 expression in Maf1-/- deficient cells enhances differentiation. RNA pol III repression by either chemical inhibition or knockdown of Brf1, promotes adipogenesis. Altered RNA pol III-dependent transcription produces select changes in RNA pol II-derived transcripts with a significant enrichment of adipogenic gene signatures. Furthermore, RNA pol III-mediated transcription positively regulates long non-coding RNA H19 and Wnt6 expression, established adipogenesis inhibitors. Together, these studies reveal an important and unexpected function for RNA pol III-mediated transcription and Maf1 in mesoderm induction and cellular differentiation.
Project description:MAF1 represses Pol III-mediated transcription by interfering with TFIIIB and Pol III. Herein, we found that MAF1 knockdown induced CDKN1A transcription and chromatin looping concurrently with Pol III recruitment. Simultaneous knockdown of MAF1 with Pol III or BRF1 (subunit of TFIIIB) diminished the activation and looping effect, which indicates that recruiting Pol III was required for activation of Pol II-mediated transcription and chromatin looping. ChIP analysis after MAF1 knockdown indicated enhanced binding of Pol III and BRF1, as well as of CFP1, p300, and PCAF, which are factors that mediate active histone marks, along with the binding of TBP and POLR2E to the CDKN1A promoter. Simultaneous knockdown with Pol III abolished these regulatory events. Similar results were obtained for GDF15. Our results reveal a novel mechanism by which MAF1 and Pol III regulate the activity of a protein-coding gene transcribed by Pol II.
Project description:MAF1 represses Pol III-mediated transcription by interfering with TFIIIB and Pol III. Herein, we found that MAF1 knockdown induced CDKN1A transcription and chromatin looping concurrently with Pol III recruitment. Simultaneous knockdown of MAF1 with Pol III or BRF1 (subunit of TFIIIB) diminished the activation and looping effect, which indicates that recruiting Pol III was required for activation of Pol II-mediated transcription and chromatin looping. ChIP analysis after MAF1 knockdown indicated enhanced binding of Pol III and BRF1, as well as of CFP1, p300, and PCAF, which are factors that mediate active histone marks, along with the binding of TBP and POLR2E to the CDKN1A promoter. Simultaneous knockdown with Pol III abolished these regulatory events. Similar results were obtained for GDF15. Our results reveal a novel mechanism by which MAF1 and Pol III regulate the activity of a protein-coding gene transcribed by Pol II. Knockdown assay was performed using siRNA obtained from MISSION®RNA (Sigma). Inhibition of expression of Pol III (SASI_Hs01_00046568) and MAF1 (SASI_Hs01_00135954) was achieved by transfection with LipofectamineTM RNAiMax (Invitrogen) according to the manufacturer’s protocol. MISSION® siRNA Universal Negative Control (Sigma) was used as knockdown control. Cells were transfected in serum-free medium. After 8 h, the siRNA containing medium was replaced with complete medium.
Project description:The conserved phosphoprotein MAF1 is the main known direct repressor of RNA polymerase III (Pol III). MAF1 is phosphorylated and inactivated by the nutrient-sensing TORC1 kinase, making MAF1 a nutrient effector for Pol III transcription. MAF1 has been associated with lipid metabolism in D. melanogaster, C. elegans, and the mouse. However, whereas downregulation of Maf1 generally increases lipogenesis, Maf1-/- mice are lean even under a High Fat (HF) diet. Here we compared Maf1-/- mice fed a Chow diet with mice lacking Maf1 specifically in hepatocytes (Maf1hep-/- mice) fed either a Chow or HF diet. Unlike Maf1-/- mice, Maf1hep-/- mice become slightly heavier than control mice at an old age and much earlier under a HF diet, with increased adiposity. Liver ChIPseq, RNAseq and proteomics analyses indicate increased Pol III occupancy at Pol III genes, very few differences in mRNA accumulation, and subtle changes in protein accumulation that are consistent with increased lipogenesis. RNAseq and metabolite profiling indicate that liver phenotypes of Maf1-/- mice are strongly influenced by systemic inter-organ communication. Notable changes observed in the three phenotypically distinct cohorts include downregulation of Mouse Urinary Proteins, upregulation of Cyp2a4 expression, suggestive of an alteration of Growth Hormone levels or secretion pattern, and downregulation of Angiogenin, a phenomenon that might be directly linked to increased Pol III occupancy of tRNA genes in the main Angiogenin promoter region.