Project description:Central memory CD4 T cells (TCM) have a critical homeostatic role in chronic HIV infection. We asked if TCM cells from HIV+ patients have a gene expression profile related with less proliferation and less survival capacities. To determine the gene expression profile of CD4+ T cells subpopulations we performed microarrays (Human Gene 1.0 ST, Affymetrix) to identify differentially expressed genes between CD4+ T cells subpopulations from HIV+ patients and controls.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Human Immunodeficiency Virus type-1 (HIV-1)-infected individuals show metabolic alterations of CD4 T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4 T cells from HIV-1 patients and revealed that elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the FDA-approved drug metformin, which targets mitochondrial respiratory chain complex I, suppresses HIV-1 replication in human CD4 T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4 T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein, FASTKD5, to promote the expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4 T cells as a target for HIV-1 therapy.
Project description:Host directed therapies against HIV-1 are thought to be critical for long term containment of the HIV-1 pandemic but remain elusive. Since HIV-1 infects and manipulates important effectors of both the innate and adaptive immune system, identifying modulations of the host cell systems in humans during HIV-1 infection may be crucial for the development of immune based therapies. Here, we quantified the changes of the proteome in human CD4+ T cells upon HIV-1 infection, both in vitro and in vivo. A SWATH-MS approach was used to measure the proteome of human primary CD4+ T cells infected with HIV-1 in vitro as well as CD4+ T cells from HIV-1 infected patients with paired samples on and off antiretroviral treatment. In the in vitro experiment, the proteome of CD4+ T cells was quantified over a time course following HIV-1 infection. 1,725 host cell proteins and 4 HIV-1 proteins were quantified, with 145 proteins changing significantly during the time course. Changes in the proteome peaked 24 hours after infection, concomitantly with significant HIV-1 protein production. In the in vivo branch of the study, CD4+ T cells from viremic patients and those with no detectable viral load after treatment were sorted and the proteomes quantified. We consistently detected 895 proteins, 172 of which were considered to be significantly different between viraemic patients and patients undergoing successful treatment. The proteome of in vitro infected CD4+ T cells was modulated on multiple functional levels, including TLR-4 signalling and the type 1 interferon signalling pathway. Perturbations in the type 1 interferon signalling pathway were recapitulated in CD4+ T cells from patients. The study shows that proteome maps generated by SWATH-MS indicate a range of functionally significant changes in the proteome of HIV infected human CD4+ T cells. Exploring these perturbations in more detail may help identify new targets for immune based interventions.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.