Project description:BldC is a transcriptional regulator essential for morphological development Streptomyces venezuelae. Although bldC deletion strain is unable to produce aerial hyphae, electron microscopy reveals that almost all of the colony biomass is in the form of spores rather than undifferentiated vegetative hyphae. This ChIP-chip experiment was carried out to determine the binding sites, and thence the regulon, of BldC in Streptomyces venezuelae. Cy3(IP):Cy5(Total) signal ratios in the wild type were compared to those in a bldC knockout strain.
Project description:The whiH gene is required for the differentiation of aerial hyphae into spores in Streptomyces species. It is a predicted member of the GntR family of transcription factors and has been shown to bind specifically to a sequence in its own promoter. This ChIP-Seq experiment was carried out to determine all the binding sites whiH binds to in the genome of Streptomyces venezuelae. A whiH deletion strain was made and a FLAG tagged whiH protein was expressed in it from a genome-integrated plasmid. Then anti-FLAG antibodies were used for chromatin immunoprecipitation followed by high throughput sequencing. The wild type Streptomyces venezuelae strain (ATCC 10712) was used as a negative control. For both the FLAG-WhiH strain and the WT strain, non-immunoprecipitated (total) DNA was also sequenced to arrive at a background enrichment which could be subtracted from the enrichment in the immunoprecipated sample.
Project description:We isolated and sequenced mRNA from Streptomyces venezuelae grown on two different solid media that promote exploratory behaviour in this bacterial species. The data was analyzed using DeSeq2 to identify genes that undergo changes in expression over time as well as differences in gene expression patterns between the two media conditions.
Project description:We isolated and sequenced mRNA from Streptomyces venezuelae grown on solid medium that promotes exploratory behaviour in this bacterial species. The data was analyzed using DeSeq2 to identify genes that undergo changes in expression over time.