Project description:ABSTRACT Background & aims: The role of the intestine in the maintenance of cholesterol homeostasis is increasingly recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport (RCT) pathway, to which both biliary and transintestinal cholesterol excretion (TICE) contribute. The mechanisms controlling the flux of cholesterol through the TICE pathway are,however, poorly understood. In the current study we aimed to identify treatment modalities that stimulate TICE and to uncover underlying driving mechanisms. Methods: TICE was assessed in a panel of knock-out and transgenic mice as well as in mice treated with the FXR agonist PX20606 either or not combined with the cholesterol absorption inhibitor ezetimibe. Results: We show that TICE is regulated by intestinal farnesoid X receptor (FXR) via its target fibroblast growth factor 15/19 (FGF15/19) and that the pathway can be stimulated to such an extent that mice excrete ~60% of their total cholesterol content each day. Both PX20606 and FGF19 increased the muricholate/cholate ratio in bile, inducing a more hydrophilic bile salt pool. The altered bile salt pool robustly stimulated secretion of cholesterol into the intestinal lumen via the sterol exporting heterodimer ATP binding cassette subfamily G member 5/8 (ABCG5/G8). Of note, we demonstrate that the increase in TICE induced by PX20206 is independent of changes in cholesterol absorption. Conclusions: Hydrophilicity of the bile salt pool, controlled by FXR and FGF15/19, is an important determinant of cholesterol removal via TICE. Translation of these results to humans may offer new treatment modalities for prevention of cardiovascular disease.
Project description:Intake and absorption of cholesterol (the latter determined by double labeled cholesterol methodology) were nearly unchanged in mice fed the saturated fat diet, but the fecal excretion of neutral sterols (i.e. cholesterol and its microbial conversion products) was increased compared with control diet(+80%; p<0.01). The saturated fat diet did neither significantly affect biliary cholesterol secretion nor intestinal cholesterol absorption (49% vs. 65% in controls, double labeled water methodology, p>0.1). Thus, the increased fecal neutral sterol excretion was primarily due to increased net transintestinal cholesterol excretion (+89% versus control; p<0.05). Since a major fraction of TICE cholesterol absorption is normally reabsorbed (J Lipid Res 2019 Sep;60(9):1562-1572), the increased fecal cholesterol excretion could be due to more transintestinal excretion of cholesterol into the intestinal lumen and/or to its decreased reabsorption. The saturated fat diet increased jejunal expression of genes involved in cholesterol synthesis (Srebf2 and target genes), but did not affect whole body de novo cholesterol synthesis. Conclusion This proof-of-principle study shows that increasing the saturation of the dietary fat can stimulate fecal cholesterol excretion. Individual components of saturated fat diets are to be explored to address the responsible molecular mechanisms
Project description:Pu-erh tea displays cholesterol-lowering properties, but the underlying mechanism has not been elucidated. Theabrownin is one of the most active and abundant pigments in Pu-erh tea. Here, we show that theabrownin alters the gut microbiota in mice and humans, predominantly suppressing microbes associated with bile-salt hydrolase (BSH) activity. Theabrownin increases the levels of ileal conjugated bile acids (BAs) which, in turn, inhibit the intestinal FXR-FGF15 signaling pathway, resulting in increased hepatic production and fecal excretion of BAs, reduced hepatic cholesterol, and decreased lipogenesis. The inhibition of intestinal FXR-FGF15 signaling is accompanied by increased gene expression of enzymes in the alternative BA synthetic pathway, production of hepatic chenodeoxycholic acid, activation of hepatic FXR, and hepatic lipolysis. Our results shed light into the mechanisms behind the cholesterol- and lipid-lowering effects of Pu-erh tea, and suggest that decreased intestinal BSH microbes and/or decreased FXR-FGF15 signaling may be potential anti-hypercholesterolemia and anti-hyperlipidemia therapies.
Project description:Transintestinal cholesterol transport is important in mice and humans and controls ezetimibe induced fecal neutral sterol excretion
Project description:The nuclear receptor FXR acts as an intracellular bile salt sensor that regulates synthesis and transport of bile salts within their enterohepatic circulation. In addition, FXR is involved in control of a variety of crucial metabolic pathways. Four FXR splice variants are known, i.e. FXRα1-4. Although these isoforms show differences in spatial and temporal expression patterns as well as in transcriptional activity, the physiological relevance hereof has remained elusive. We have evaluated specific roles of hepatic FXRα2 and FXRα4 by stably expressing these isoforms using liver-specific self-complementary adeno-associated viral vectors in total body FXR knock-out mice. The hepatic gene expression profile of the FXR knock-out mice was largely normalized by both isoforms. Yet, differential effects were also apparent; FXRα2 was more effective in reducing elevated HDL levels and transrepressed hepatic expression of Cyp8B1, the regulator of cholate synthesis. The latter coincided with a switch in hydrophobicity of the bile salt pool. Furthermore, FXRα2-transduction caused an increased neutral sterol excretion compared to FXRα4 without affecting intestinal cholesterol absorption. Our data show, for the first time, that hepatic FXRα2 and FXRα4 differentially modulate bile salt and lipoprotein metabolism in mice.
Project description:Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before the acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin and hepatic cell necrosis. Moreover, LcS alleviated the acetaminophen-induced intestinal mucosal permeability, elevation in serum IL-1α and lipopolysaccharide, and decreased levels of serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol and sugars in the gut. Additionally, the transcriptome and proteomics showed that LcS mitigated the downregulation of metabolism and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:To map gene regulation downstream of cholesterol overload and NF-kappaB signaling in smooth muscle cells (SMCs), we cultured primary aortic SMCs from wildtype mice with cyclodextrin-complexed cholesterol or the prototypical NF-kappaB activator, tumor necrosis factor (TNF), or both.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.