Project description:Brown planthopper (BPH; Nilaparvata lugens) is a phloem feeding insect which is one of the most serious threats to rice crops in many countries throughout Asia. 1H NMR spectroscopy, combined with chemometrics, was used to analyze the polar metabolome from leaf extracts of Thai Jasmine rice (brown planthopper (BPH)-susceptible KD) and its BPH resistant isogenic lines (BPH-resistant IL7 and BPH-resistant+ IL308 varieties) with and without BPH infestation at various time points (days 1, 2, 3, 4 and 8). Physiological changes of the rice isogenic lines were different based on the quantitative trait loci of BPH resistance. Multivariate models were capable of distinguishing between the susceptible and the resistant rice varieties throughout the infestation. The concentration of 10 metabolites were significantly altered (p < 0.05) between the infested and the control groups of each examined rice variety. Metabolic pathway analysis suggested that BPH infestation could perturb transamination during the early stages of infestation (days 1–3) for all rice varieties. In addition, the IL7 and IL308 varieties responded earlier (day 3) than the KD variety (day 8) by perturbing amino acid metabolism, shikimate and gluconeogenesis pathways. By day 8 of the infestation, the KD cultivar responded by activating the amino acid-mediated-de novo pathway whereas the IL308 variety activated the purine and pyrimidine compound-mediated-salvage pathway for nucleotide biosynthesis. This study has identified, for the first time, several potential metabolic pathways for acclimatization and defense mechanisms against BPH infestation. These findings provide a valuable, first insight into BPH resistance mechanisms in Thai Jasmine rice.
Project description:Infestation with white-backed planthopper (WBPH) to rice caused induced resistance to rice pathogens but brown planthopper (BPH) infestation induce weaker resistance to rice pathogens. We compared changes in gene expression in rice plants infested with WBPH and BPH to gain some insight into the WBPH-induced resistance to rice pathogens. An analysis, using microarrays, of gene expression in rice plants infested with these planthoppers revealed that WBPH infestation caused high induction of many defense-related genes including pathogenesis-related (PR) genes than BPH infestation. Furthermore, hydroperoxide lyase 2 (OsHPL2) which is an enzyme to produce C6 volatiles was induced by WBPH infestation, but not by BPH infestation. Keywords: response to herbivory; induced resistance
Project description:To explore the molecular mechanisms underlying the rice plant-mediated interaction between brown planthopper (BPH) and striped stem borer (SSB), gene expression changes in rice plant response to infestation by SSB, BPH or both and control were analyzed by RNA-seq.
Project description:Infestation with white-backed planthopper (WBPH) to rice caused induced resistance to rice pathogens but brown planthopper (BPH) infestation induce weaker resistance to rice pathogens. We compared changes in gene expression in rice plants infested with WBPH and BPH to gain some insight into the WBPH-induced resistance to rice pathogens. An analysis, using microarrays, of gene expression in rice plants infested with these planthoppers revealed that WBPH infestation caused high induction of many defense-related genes including pathogenesis-related (PR) genes than BPH infestation. Furthermore, hydroperoxide lyase 2 (OsHPL2) which is an enzyme to produce C6 volatiles was induced by WBPH infestation, but not by BPH infestation. Experiment Overall Design: Agilent rice oligo microarray was used to investigate the gene expression profiling in rice plants infested with WBPH or BPH. Total RNA was extracted from pooled leaf blades infested with WBPH or BPH for 24 h and from mock-treated pooled leaf blades. Total RNA (200 ng) was labeled with Cy-3 or Cy-5 using an Agilent low RNA input linear amplification kit. Fluorescently labeled targets were hybridized to Agilent rice oligo microarrays. Hybridization and wash processes were performed according to the manufacturerâ??s instructions, and hybridized microarrays were scanned using an Agilent DNA microarray scanner. Agilent Feature Extraction software was employed for the image analysis and data extraction processes. Fold changes in expression level in each treatment were compared with those of the respective mock-treated controls. In each treatment, the experiment was performed independently three times.
Project description:Here, we reported the quantitative analysis of brown planthopper (BPH) interactions with rice stem tissue by iTRAQ proteomic techonology.The results obtained from this work not only aimed to provide a new clues that will facilitate better understanding of complex molecular and cellular events in BPH infestation, but also explored the regulatory roles of HSP20 for breeding BPH resistant rice.
Project description:The aim of this study was to analyze potential brown planthopper (BPH) resistant genes in Rathu Heenati (RHT) by Affymetrix whole rice genome array,BPH susceptible and resistant rice varieties of TN1(Taichung Native 1)as control. All the resistant related genes derived from RHT will be analyzed according to the SSR markers interval flanked on the chromosome 3, 4, 6 and 10. It will be benefit to the gene clone and marker assistant breeding for Bph3 gene in the near future. We used microarrays to detail the global differential gene expression before and after brown planthopper attack in two different varieties, and identified distinct classes of high enriched genes induced by BPH or constituent in RHT The 2nd to 3rd instar nymphs of BPH were transferred to tillering stage seedings (10 BPH nymphs per plant) in a box covered with nylon-mesh. Stems of the rice plant infected by BPH were collected at 0h (T0), 8h (T8), 24h (T24) after BPH attack, total RNA were extracted for the microarray hybirdlization.
Project description:The aim of this study was to analyze potential brown planthopper (BPH) resistant genes in Rathu Heenati (RHT) by Affymetrix whole rice genome array,BPH susceptible and resistant rice varieties of TN1(Taichung Native 1)as control. All the resistant related genes derived from RHT will be analyzed according to the SSR markers interval flanked on the chromosome 3, 4, 6 and 10. It will be benefit to the gene clone and marker assistant breeding for Bph3 gene in the near future. We used microarrays to detail the global differential gene expression before and after brown planthopper attack in two different varieties, and identified distinct classes of high enriched genes induced by BPH or constituent in RHT
Project description:Brown planthopper (BPH) is the most notorious insect pest to rice. Drought is the most commonly occurring global adversity. BPH infestation caused adaxially-rolled leaves and shrunk bulliform cells similar to drought. The bulliform-cell characteristic gene, ACL1, negatively regulated BPH resistance and drought tolerance, with decreased cuticular wax in ACL1-D, which resulted in quicker water losing. ACL1 was specifically expressed in epidermis. TurboID system and various biochemical assays revealed that ACL1 interacted with the epidermal-characteristic HD-Zip IV ROCs. ROC4 and ROC5 positively regulated BPH resistance and drought tolerance through modulating cuticular wax and bulliform cells respectively. Overexpression of ROC4 and ROC5 both rescued ACL1-D in various related phenotypes simultaneously. Moreover, ACL1 competed with ROC4 and ROC5 in homo-dimerization and hetero-dimerization. Altogether, we illustrated that ACL1-ROCs complex synergistically mediate drought tolerance and BPH resistance through regulating cuticular wax and bulliform cells in rice, a new mechanism which might facilitate BPH resistance breeding.
Project description:Background Rice farming faces a serious challenge from the brown planthopper (BPH), with the pyramiding of BPH14 and BPH15 genes delivering effective protection in elite rice strains. However, the molecular basis behind this resistance is still unclear. Results The study investigated miRNA levels in BPH14/BPH15 pyramiding line (B1415) and their recurrent parent (RP) under BPH infestation employing high-throughput sequencing and revealed 136 differentially expressed miRNAs (DEMs) among 550 known miRNAs. An integrated analysis highlighted that 587 miRNA-mRNA pairs linking 95 DEMs to 537 targeted genes were enriched in phenylpropanoid and lignin metabolism, circadian rhythms, and amino acid metabolism. The candidate DEMs, miR172d-3p, and miR396 family members were identified as negative regulators to decrease their target genes Os06g0708700 (encoding a nodulin-like protein) and Os11g0129700 (encoding an AP2 domain transcription factor), suggesting their key roles in rice against BPH. Conclusions Our investigation provides the first insights into miRNA-mediated defense mechanisms in the B1415. Identifying miRNAs and their target mRNAs in BPH resistance opens a new avenue for rice breeding programs, offering potential targets for improving pest resistance. Understanding these molecular interactions paves the way for developing more resistant rice cultivars, thereby contributing to sustainable rice production and food security.
Project description:Nilaparvata lugens, the brown planthopper (BPH) sucks the rice phloem sap containing high sucrose to obtain carbon source. The comparative gene expression analyses were perfomed during feeding against starvation in order to determine sugar transporter and other feeding related gene expression. Young BPH females that feed rice seedlings or feed-deprived (water-supplied) for 24 hours were prepared in triplicate. Gene expression was compared in these two groups: feeding and feed-deprived.