Project description:We report the application of transcriptome sequencing technology for high-throughput profiling of Serratia marcescens for producing prodigiosin. By obtaining over 163 million bases of sequence from Serratia marcescens genome DNA, we generated transcriptome -state maps of Serratia marcescens 12h cells, 24h cells, and 36h cells at 30C and 37C,respectively. We explored the mechanism of S. marcescens response temperature regulation at the transcription level through transcriptome sequencing technology. We found that the pig gene cluster at low temperature would favor at the transcriptional level, however, higher temperature resulting in instability and loss of enzyme activity. Numerous amino acid metabolic pathways involved in prodigiosin biosynthesis in S. marcescens responded to temperature changes, and metabolic fluxes were directed towards prodigiosin biosynthesis. At the same time, quorum sensing, two-component regulatory system and sRNA were stimulated by temperature to regulate PG biosynthesis and involve strain virulence and exclusive genes. Moreover, inhibition factors was the one reason for S. marcescens incapable synthesis of prodigiosin at 37C. This study laid a good foundation for understanding the biological functions of prodigiosin, improving the temperature tolerance of industrial strains, and excavating temperature-sensitive regulatory elements.
Project description:Screening a library of 573 cyanobacteria extracts for inhibition of the quorum sensing regulated prodigiosin production of Serratia marcescens, an extract of the cyanobacterium Fischerella ambigua (Näg.) Gomont 108b was found to drastically increase the prodigiosin production. Bioactivity-guided isolation of the active compounds resulted in the two new natural products ambigol D and E along with the known ambigols A and C. Ambigol C treatment increased prodiginine production of Serratia sp. ATCC 39006 (S39006) by a factor of 10, while ambigols A and D were found to have antibiotic activity against this strain. RNA-Seq of S39006 treated with ambigol C and subsequent differential gene expression and functional enrichment analyses indicated a significant downregulation of genes associated with the translation machinery and fatty acid biosynthesis in Serratia, as well as increased expression of genes related to the uptake of l-proline. These results suggest that the ambigols increase the prodiginine production in S39006 not by activating the SmaIR quorum sensing system, but possibly by increasing the precursor supply of l-proline and malonyl-CoA.
Project description:The EepR protein is a two-component response regulator protein in the bacterium Serratia marcescens. Mutation of the eepR gene results in pleiotropic changes including reduced expression of secondary metabolites and proteases.