Project description:Novel taste memories, critical for animal survival, are consolidated to form long term memories which are dependent on translation regulation in the gustatory cortex We used microarray for identification of genes involved in novel taste learning at two time points- 1 and 3 hours following memory formation for novel taste Adult rats were separated into two groups- novel tatse (0.1% sacchain) and water, two time points were used 1, 3 hours following learnin. Rna was extracted and hybridized on Affymetrix microarray
Project description:Novel taste memories, critical for animal survival, are consolidated to form long term memories which are dependent on translation regulation in the gustatory cortex We used microarray for identification of genes involved in novel taste learning at two time points- 1 and 3 hours following memory formation for novel taste
Project description:To uncover novel molecules involved in taste detection, we performed a microarray-based screen for genes enriched in taste neurons. Proboscis RNA from flies homozygous for a recessive poxn null mutation was compared to RNA from heterozygous controls. Poxn mutants have a transformation of labellar gustatory chemosensory bristles into mechanosensory bristles and therefore lack most or all taste neurons.
Project description:To uncover novel molecules involved in taste detection, we performed a microarray-based screen for genes enriched in taste neurons. Proboscis RNA from flies homozygous for a recessive poxn null mutation was compared to RNA from heterozygous controls. Poxn mutants have a transformation of labellar gustatory chemosensory bristles into mechanosensory bristles and therefore lack most or all taste neurons. Experiment Overall Design: Proboscises of poxn70 homozygous mutant and poxn70 heterozygous mutant males (8-18 days post eclosure) were dissected, and total RNA was harvested in Trizol according to standard trizol protocol. Samples for each microarray were prepared from 164-280 proboscises. We performed 3 biological replicates for each genotype.
Project description:The tongue is a heavily innervated and vascularized striated muscle that plays an important role in vocalization and swallowing. The surface of the tongue is lined with papillae which contain gustatory cells expressing various taste receptors. There is growing evidence to suggest our perceptions of taste and food preference are remodelled following chronic consumption of western diets rich in carbohydrate and fats. Our sensitivity to taste and also metabolism western diets may be a key factor in the rising prevalence of obesity but a systems-wide analysis is lacking. Here, we defined the proteomic landscape of the mouse tongue and quantified changes following chronic consumption of a chow or western diet for 7 months. We observed a dramatic remodelling of the tongue proteome including changes in fatty acid and mitochondrial metabolism. The expression of several receptors, and metabolic enzymes and hormones were also differentially regulated which is exciting as these may serve as novel therapeutic targets to potentially alter taste perception and food preference to combat obesity.
Project description:Inflammation is a key component of pathological angiogenesis. Here we induce cornea neovascularisation using sutures placed into the cornea, and sutures are removed to induce a regression phase. We used whole transcriptome microarray to monitor gene expression profies of several genes
Project description:Few studies have assessed the patterns of parasite populations of rodents over a longitudinal gradient in Chile. In this work, the gastrointestinal helminthic fauna of invasive rodents in Chile was examined to assess the association between their presence/absence and abundance with latitude, host sex, and host body condition, and to assess the coexistence and correlation of the abundance between parasite species. Rodents were obtained from 20 localities between 33 and 43°S. Helminths were extracted from the gastrointestinal tract and identified morphologically. Overall, 13 helminth taxa were obtained. The most frequently identified parasite species was Heterakis spumosa, and the most abundant was Syphacia muris, while Physaloptera sp. was the most widely distributed. No locality presented with a coexistence that was different from that expected by chance, while the abundance of five helminthic species correlated with the abundance of another in at least one locality, most likely due to co-infection rather than interaction. Host sex was associated with parasite presence or abundance, and female sex-biased parasitism was notably observed in all cases. Body condition and latitude presented either a positive or negative association with the presence or abundance of parasites depending on the species. It is notable that the likely native Physaloptera sp. is widely distributed among invasive rodents. Further, gravid females were found, suggesting spillback of this species to the native fauna. The low frequency and abundance of highly zoonotic hymenolepid species suggest that rodents are of low concern regarding gastrointestinal zoonotic helminths.
Project description:Efforts to unravel the mechanisms underlying taste sensation (gustation) have largely focused on rodents. The first comprehensive database of gene expression in primate (Macaca fascicularis) taste buds is presented. This database provides a foundation for further studies in diverse aspects of taste biology. A taste bud gene expression database was generated using laser capture microdissection (LCM) of tissue freeze medium OTC embedded macaque tongue tissue blocks. We collected fungiform (FG) taste buds at the front of the tongue, circumvallate (CV) taste buds at the back of the tongue, as well as non-gustatory lingual epithelium (LE). Gene expression was also analyzed in the top and bottom portions of CV taste buds collected using LCM. Samples were collected from 10 animals - 7 female, 3 male.
Project description:The Norway rat has important impacts on our life. They are amongst the most used research subjects, resulting in ground-breaking advances. At the same time, wild rats live in close association with us, leading to various adverse interactions. In face of this relevance, it is surprising how little is known about their natural behaviour. While recent laboratory studies revealed their complex social skills, little is known about their social behaviour in the wild. An integration of these different scientific approaches is crucial to understand their social life, which will enable us to design more valid research paradigms, develop more effective management strategies, and to provide better welfare standards. Hence, I first summarise the literature on their natural social behaviour. Second, I provide an overview of recent developments concerning their social cognition. Third, I illustrate why an integration of these areas would be beneficial to optimise our interactions with them.