ABSTRACT: Legume and grass agricultural crop assemblage influence a soil subtropical prokaryotic community under a no-tillage system Raw sequence reads
Project description:Mowing is a common practice to agricultural and horticultural grass species. Nonetheless, it has been unclear how mowing may affect roots at the levels of nutrient accumulation and transcriptional regulation. Hereby we report a comprehensive investigation on molecular impacts of mowing by using a model grass species, Brachypodium distachyon Bd21.
Project description:Glycosylation represents a major post-translational modification of proteins that can influence their structure and function.Telesot immunoglobulin M (IgM) is an especially important product of the immune system because it is the main Abs in seum and plays a critical role against defense infection. However, little is known regarding site-specific N-glycan characteristics in teleost IgM , LC-ESI-MS/MS was used to analysis deglycopeptides and glycopeptides of grass carp serum IgM, and MALDI-MS was used to analysis released carbohydrates by PNGaseF diestion of grass carp serum IgM.
Project description:The spring bloom in the North Atlantic develops over a few weeks in response to the physical stabilization of the nutrient replete water column and is one of the biggest biological signals on earth. The composition of the phytoplankton assemblage during the spring bloom of 2008 was evaluated, using a microarray, on the basis of functional genes that encode key enzymes in nitrogen and carbon assimilation in eukaryotic and prokaryotic phytoplankton. Oligonucleotide archetype probes representing RuBisCO, nitrate reductase and nitrate transporter genes from major phytoplankton classes detected a diverse assemblage. For RuBisCO, the archetypes with strongest signals represented known phytoplankton groups, but for the nitrate related genes, the major signals were not closely related to any known phytoplankton sequences. Most of the assemblage's components exhibited consistent temporal/spatial patterns. Yet, the strongest archetype signals often showed quite different patterns, indicating different ecological responses by the main players. The most abundant phytoplankton genera identified previously by microscopy, however, were not well represented on the microarray. The lack of sequence data for well-studied species, and the inability to identify organisms associated with functional gene sequences in the environment, still limits our understanding of phytoplankton ecology even in this relatively well-studied system.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
2020-03-06 | GSE146427 | GEO
Project description:Multi-Species Cover Crop and Tillage Trial
Project description:A double cropping system has been commercially adopted in subtropical regions in southern China, where there is abundant sunshine and heat resources. In this viticulture system, the first growing season normally starts as a summer cropping cycle; then, the vine is pruned and forced by hydrogen cyanamide, resulting in a second crop in January of the next year. Due to climate differences between the two growing seasons,the transcriptome varies greatly between summer- and winter- grape berries. In this study, we conducted RNA-seq for two table grape varieties (Vitis vinifera cv. Victoria and V. vinifera cv. Muscat Superior) at three developmental stages (pre-veraison, post-veraison and full maturity).The transcriptome between summer- and winter- grape berries were compared.