Project description:Post-transcriptional gene regulation controls the amount of a protein produced from an individual mRNA transcript by altering mRNA decay and translation rates. Many putative post-transcriptional cis-regulatory elements have been identified from computational, molecular biology, and biochemical studies studies; however, identifying which sequence elements are sufficient to regulate expression remains challenging. We created a high-throughput, cell-based screen that tested the post-transcriptional regulatory potential for thousands of short sequence elements. Sequences with known effects have the expected performance in this screen, showing this methodology is robust. Hundreds of novel short sequences were identified as being able to alter gene expression, both by increasing and decreasing protein production from the fluorescence reporter, and we validated the effects for fifty of these sequences. Importantly, sequences discovered in this screen are conserved in human 3′UTRs, and furthermore, the sequences can regulate expression in the context of those endogenous 3′UTRs. Hundreds of previously unknown post-transcriptional cis-regulatory elements exist, many of which increase gene expression. These results suggest that each human 3′UTR has many small cis-regulatory elements that interact with RNA binding proteins, and these interactions control the fate of an mRNA transcript.
Project description:Post-transcriptional gene regulation controls the amount of a protein produced from an individual mRNA transcript by altering mRNA decay and translation rates. Many putative post-transcriptional cis-regulatory elements have been identified from computational, molecular biology, and biochemical studies studies; however, identifying which sequence elements are sufficient to regulate expression remains challenging. We created a high-throughput, cell-based screen that tested the post-transcriptional regulatory potential for thousands of short sequence elements. Sequences with known effects have the expected performance in this screen, showing this methodology is robust. Hundreds of novel short sequences were identified as being able to alter gene expression, both by increasing and decreasing protein production from the fluorescence reporter, and we validated the effects for fifty of these sequences. Importantly, sequences discovered in this screen are conserved in human 3?UTRs, and furthermore, the sequences can regulate expression in the context of those endogenous 3?UTRs. Hundreds of previously unknown post-transcriptional cis-regulatory elements exist, many of which increase gene expression. These results suggest that each human 3?UTR has many small cis-regulatory elements that interact with RNA binding proteins, and these interactions control the fate of an mRNA transcript.
Project description:Evolutionary alterations to cis-regulatory sequences are likely to cause adaptive phenotypic complexity, through orchestrating changes in cellular proliferation, identity and communication. For non-model organisms with adaptive key-innovations, patterns of regulatory evolution have been predominantly limited to targeted sequence-based analyses. Chromatin-immunoprecipitation with high-throughput sequencing (ChIP-seq) is a technology that has only been used in genetic model systems and is a powerful experimental tool to screen for active cis-regulatory elements. Here, we show that it can also be used in ecological model systems and permits genome-wide functional exploration of cis-regulatory elements. As a proof of concept, we use ChIP-seq technology in adult fin tissue of the cichlid fish Oreochromis niloticus to map active promoter elements, as indicated by occupancy of trimethylated Histone H3 Lysine 4 (H3K4me3). The fact that cichlids are one of the most phenotypically diverse and species-rich families of vertebrates could make them a perfect model system for the further in-depth analysis of the evolution of transcriptional regulation. examination of H3K4me3 in adult fin tissue of the Nile tilapia (Oreochromis niloticus)
Project description:We performed chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (seq) from mouse E11.5 maxillary arches using anti-LHX6 antibody to identify LHX target cis-regulatory elements.
Project description:We present a combined experimental/computational technology to reveal a catalogue of functional regulatory elements embedded in 3’UTRs of human transcripts. We used a bidirectional reporter system coupled with flow cytometry and high-throughput sequencing to measure the effect of short, non-coding vertebrate-conserved RNA sequences on transcript stability and translation. Information-theoretic motif analysis of the resulting sequence-to-gene-expression mapping revealed linear and structural RNA cis-regulatory elements that positively and negatively modulate the post-transcriptional fates of human transcripts.
Project description:The integrated activity of cis-regulatory elements fine-tunes transcriptional programs of mammalian cells by recruiting cell type–specific as well as ubiquitous transcription factors (TFs). Despite their key role in modulating transcription, enhancers are still poorly characterized at the molecular level, and their limited DNA sequence conservation in evolution and variable distance from target genes make their unbiased identification challenging. The coexistence of high mono-methylation and low tri-methylation levels of lysine 4 of histone H3 is considered a signature of enhancers, but a comprehensive view of histone modifications associated to enhancers is still lacking. By combining chromatin immunoprecipitation (ChIP) with mass spectrometry, we investigated cis-regulatory regions in macrophages to comprehensively identify histone marks specifically associated with enhancers, and to profile their dynamics after transcriptional activation elicited by an inflammatory stimulation. The intersection of the proteomics data with ChIP-seq and RNA-seq analyses revealed the existence of novel subpopulations of enhancers, marked by specific histone modification signatures: specifically, H3K36me2/K4me1 marks transcribed enhancers, while H3K36me3/K4me1 and H3K79me2/K4me1 combinations mark distinct classes of intronic enhancers. Thus, our MS analysis of functionally distinct genomic regions revealed the combinatorial code of histone modifications, highlighting the potential of proteomics in addressing fundamental questions in epigenetics.
Project description:To systematically examine the transcription factors and cis-regulatory elements that shape diverse Treg regulatory programs, we used single-cell Assay for Transposase-Accessible Chromatin with high-throughput sequencing (scATAC-seq) to generate chromatin accessibility profiles of mouse regulatory and conventional T cells from different organs and genetic backgrounds.
Project description:<p>Profiling of gene expression with microarrays holds great potential for human health, for illuminating disease pathways or providing biomarkers to monitor disease or its resolution. Using high-throughput approaches for genotyping, immunophenotyping and gene expression analysis, the project will examine the basis for the control of gene expression in human immune cells, and how it is influenced by natural genetic variation or aging. In practice, the project will combine several cross-informative approaches: 1) Building on the established sample/data pipelines and robust protocols of the Immunological Genome (ImmGen) project, and on established cohorts of ethnically diverse healthy volunteers at hand, microarray techniques will be used to generate whole-genome expression profiles from purified naive CD4+ lymphocytes and monocytes from 600 healthy volunteers. A dense genetic map will be established for all donors. The results will elucidate how variation in the human genome affects the expression of immune genes, of key importance in understanding gene variants that bring susceptibility to immune or inflammatory disease. Computational analysis of these rich data will allow the reconstruction of regulatory connections between genes, helping to establish general modules and those specific of a given immune cell type. These data will be complemented by an orthogonal data group, generated from a restricted subset of 10 individuals, in which we will profile a larger set of 28 carefully delineated cell populations that exist in human blood. This work will also benefit from powerful interspecies comparison with similar experiments being performed in mice by ImmGen. 2) In addition, RNA from the same set of 28 defined cell populations will be probed with microarrays that explore other aspects of the transcriptome: i) microRNAs and other non-coding RNAs; ii) exon or splice junction arrays that will establish a map of differential splicing in human blood leukocyte. 3) The composition and reactivity of blood cells from the same donors will be established at the time of sample collection using high-throughput flow cytometry, correlating immune phenotypes with gene expression and genetic variation. 4) Genetic variability conditions the baseline levels of gene expression, but also the responsiveness to activating challenges. With samples from the same donors, NanoString technology for transcript counting will be used to analyze the transcriptional response of defined gene sets, representing response signatures of T or dendritic cells, for a fine-grained dissection of responses to different triggers (different bacterial ligands for dendritic cells, different cytokine environment for T cells). In keeping with the resource aspect of this project, all data and interpretations will be made publicly available rapidly upon curation, allowing public querying and browsing of the data, by using and evolving the existing web architectures of the ImmGen project, of the Broad Institute, and of international repositories. RELEVANCE: Exploration with DNA chips of the genome's expression microarrays holds great potential for human health, to better understand disease and to serve as diagnostic tools. Using a combination of high-throughput genomic techniques and computational biology, we will perform a broad exploration of gene expression in human blood cells across groups of African-American, Asian and European ancestry, asking how these profiles are affected by genetic variation or by age. These results will provide an invaluable reference benchmark for the interpretation of genetic and immunological studies.</p> <p>Additionally, over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, in a second study we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution. 15% of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (ATAC-QTLs). ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression, and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression.</p>