Proteomics

Dataset Information

0

Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers


ABSTRACT: The integrated activity of cis-regulatory elements fine-tunes transcriptional programs of mammalian cells by recruiting cell type–specific as well as ubiquitous transcription factors (TFs). Despite their key role in modulating transcription, enhancers are still poorly characterized at the molecular level, and their limited DNA sequence conservation in evolution and variable distance from target genes make their unbiased identification challenging. The coexistence of high mono-methylation and low tri-methylation levels of lysine 4 of histone H3 is considered a signature of enhancers, but a comprehensive view of histone modifications associated to enhancers is still lacking. By combining chromatin immunoprecipitation (ChIP) with mass spectrometry, we investigated cis-regulatory regions in macrophages to comprehensively identify histone marks specifically associated with enhancers, and to profile their dynamics after transcriptional activation elicited by an inflammatory stimulation. The intersection of the proteomics data with ChIP-seq and RNA-seq analyses revealed the existence of novel subpopulations of enhancers, marked by specific histone modification signatures: specifically, H3K36me2/K4me1 marks transcribed enhancers, while H3K36me3/K4me1 and H3K79me2/K4me1 combinations mark distinct classes of intronic enhancers. Thus, our MS analysis of functionally distinct genomic regions revealed the combinatorial code of histone modifications, highlighting the potential of proteomics in addressing fundamental questions in epigenetics.

OTHER RELATED OMICS DATASETS IN: GSE91009PRJNA356630PRJNA356631PRJNA356632

INSTRUMENT(S): Q Exactive

ORGANISM(S): Mus Musculus (mouse)

TISSUE(S): Cell Culture, Macrophage

SUBMITTER: Monica Soldi  

LAB HEAD: Monica Soldi

PROVIDER: PXD007582 | Pride | 2017-10-09

REPOSITORIES: Pride

Dataset's files

Source:
Action DRS
1601616_MS_Input_1h_I.raw Raw
1601616_MS_Input_1h_II.raw Raw
1601616_MS_Input_4h_I.raw Raw
1601616_MS_Input_4h_II.raw Raw
1601616_MS_Input_UT_I.raw Raw
Items per page:
1 - 5 of 54
altmetric image

Publications

Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers.

Soldi Monica M   Mari Tommaso T   Nicosia Luciano L   Musiani Daniele D   Sigismondo Gianluca G   Cuomo Alessandro A   Pavesi Giulio G   Bonaldi Tiziana T  

Nucleic acids research 20171201 21


The integrated activity of cis-regulatory elements fine-tunes transcriptional programs of mammalian cells by recruiting cell type-specific as well as ubiquitous transcription factors (TFs). Despite their key role in modulating transcription, enhancers are still poorly characterized at the molecular level, and their limited DNA sequence conservation in evolution and variable distance from target genes make their unbiased identification challenging. The coexistence of high mono-methylation and low  ...[more]

Similar Datasets

2018-07-11 | PXD010332 | Pride
2022-06-09 | PXD028534 | Pride
2024-06-28 | PXD052790 | Pride
2023-04-14 | PXD040685 | Pride
2018-10-23 | PXD007942 | Pride
2018-07-04 | PXD009914 | Pride
2015-10-14 | PXD002669 | Pride
2023-07-03 | PXD042540 | Pride
2016-06-24 | PXD001635 | Pride
2023-08-10 | PXD041524 | Pride