Project description:Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD.
Project description:Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. Gene expression in cerebral cortex and cerebellum of mice were determined using Agilent chips. To ensure higher quality results in gene expression data, we conducted microarrays on 4 mice per group. Young mice were 2 months old and the other aged mice were 29 months old at the time of use. Data were standardized using global normalization and pro-cessed by R-program. An absolute fold change threshold of greater than 1.5 was required to be considered for further analyses. Expression values were in log2 scale.
Project description:Insulin degrading enzyme (IDE) is a major enzyme responsible for insulin degradation in the liver. The modulation of insulin degrading enzyme activity is hypothesized to be a link between T2DM and liver cancer. Results provide insight into role of IDE in proliferation and other cell functions.
Project description:Insulin degrading enzyme (IDE) is a major enzyme responsible for insulin degradation in the liver. The modulation of insulin degrading enzyme activity is hypothesized to be a link between T2DM and liver cancer. Results provide insight into role of IDE in proliferation and other cell functions. HepG2 cells were transfected with 96nM siRNA for IDE or AllStars Negative Control siRNA (Qiagen) using Lipofectamine 2000 (Invitrogen). 16 h after transfection, cells were treated with 10 nM insulin (Sigma Aldrich) or vehicle for 24 h in serum starvation condition. Total RNA was extracted. For each of the 4 conditions, 3 biological replicates were included.
Project description:Although some phospholipase A2 forms, the initiator of the arachidonic acid cascade, contribute to carcinogenesis of many organs, the phospholipase A2 group IVc (Pla2g4c) remains to be clarified. When Pla2g4c expression in Rat mammary tumor-1 E4 (RMT-1) cells was knocked down by using specific siRNAs, cell counts were found to decrease to 40 % of the number of control and apoptotic cells were increased. Whole transcript profiling revealed the up-regulation of lipocalin 2 and down-regulation of epithelical marker genes.
Project description:Compelling evidence support an involvement of oxidative stress and intestinal inflammation as early events in the predisposition and development of obesity and its related comorbidities. Here we show that deficiency of the major mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) in the gastrointestinal tract drives spontaneous obesity. Intestinal epithelium-specific Sod2 ablation in mice induced adiposity, inflammation and insulin resistance via phospholipase A2 (PLA2) activation and increased synthesis of omega-6 polyunsaturated fatty acid arachidonic acid. Remarkably, this obese and hyperinsulinemic phenotype was rescued when fed an essential fatty acid deficient diet, which abrogates de novo biosynthesis of arachidonic acid. Data from clinical samples revealed that the negative correlation between intestinal SOD2 mRNA levels and obesity features, such as body mass index and omega-6/omega-3 fatty acid ratio, appears to be conserved between mice and humans. Collectively, our findings suggest a role of intestinal SOD2 levels, PLA2 activity and arachidonic acid in obesity presenting new potential targets of therapeutic interest in the context of this metabolic disorder.
Project description:Although some phospholipase A2 forms, the initiator of the arachidonic acid cascade, contribute to carcinogenesis of many organs, the phospholipase A2 group IVc (Pla2g4c) remains to be clarified. When Pla2g4c expression in Rat mammary tumor-1 E4 (RMT-1) cells was knocked down by using specific siRNAs, cell counts were found to decrease to 40 % of the number of control and apoptotic cells were increased. Whole transcript profiling revealed the up-regulation of lipocalin 2 and down-regulation of epithelical marker genes. The expression of Pla2g4c was blocked by transient transfection with Pla2g4c siRNA in RMT-1 cells.
Project description:Smith2013 - Regulation of Insulin Signalling by Oxidative Stress
The model describes insulin signalling (in rodent adipocytes), which includes in addition to the core pathway, the transcriptional feedback through the Forkhead box type O (FOXO) transcription factor and interaction with oxidative stress.
This model is described in the article:
Computational modelling of the regulation of Insulin signalling by oxidative stress.
Smith GR, Shanley DP.
BMC Syst Biol. 2013 May 24;7:41.
Abstract:
BACKGROUND:
Existing models of insulin signalling focus on short term dynamics, rather than the longer term dynamics necessary to understand many physiologically relevant behaviours. We have developed a model of insulin signalling in rodent adipocytes that includes both transcriptional feedback through the Forkhead box type O (FOXO) transcription factor, and interaction with oxidative stress, in addition to the core pathway. In the model Reactive Oxygen Species are both generated endogenously and can be applied externally. They regulate signalling though inhibition of phosphatases and induction of the activity of Stress Activated Protein Kinases, which themselves modulate feedbacks to insulin signalling and FOXO.
RESULTS:
Insulin and oxidative stress combined produce a lower degree of activation of insulin signalling than insulin alone. Fasting (nutrient withdrawal) and weak oxidative stress upregulate antioxidant defences while stronger oxidative stress leads to a short term activation of insulin signalling but if prolonged can have other effects including degradation of the insulin receptor substrate (IRS1) and FOXO. At high insulin the protective effect of moderate oxidative stress may disappear.
CONCLUSION:
Our model is consistent with a wide range of experimental data, some of which is difficult to explain. Oxidative stress can have effects that are both up- and down-regulatory on insulin signalling. Our model therefore shows the complexity of the interaction between the two pathways and highlights the need for such integrated computational models to give insight into the dysregulation of insulin signalling along with more data at the individual level.A complete SBML model file can be downloaded from BIOMODELS (https://www.ebi.ac.uk/biomodels-main) with unique identifier MODEL1212210000.Other files and scripts are available as additional files with this journal article and can be downloaded from https://github.com/graham1034/Smith2012_insulin_signalling.
This model is hosted on BioModels Database
and identified
by: BIOMD0000000474
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:Eicosanoids participate in the pathologies of inflammation and carcinogenesis and limiting their production by inhibiting group IVA cytosolic phospholipase A2 (cPLA2α) is a potential approach to cancer treatment. Here we report the synthesis of a new generation of thiazolyl ketone inhibitors of cPLA2α starting from compound GK470 (AVX235), and the discovery of a more potent and selective lead, GK420 (AVX420), with significant chemotherapeutic properties. A cancer cell line screen revealed the selective growth inhibitory effects of AVX420 in acute leukemias, uncovering a novel function of cPLA2α to promote cancer cell survival during oxidative stress by epigenetic control of tumour suppressor gene transcription. Moreover, we showed that in sensitive cells, AVX420 increased intracellular reactive oxygen species (ROS) and instigated a transcriptional response resulting in cell death. Our study suggests AVX420 has the potential to treat acute leukemias, and other cancers with specific adaptations to a high ROS burden.