Project description:Purpose: Our previous clinical trials have been demonstrated that Anlotinib can inhibit tumor growth upon refractory advanced non-small cell lung cancer (NSCLC) patients with the possibility mechanism of anti-angiogenesis. The present study sought to reveal the underlying molecular mechanism of Anlotinib-induced anti-angiogenesis in advanced NSCLC. Experimental Design: Computed tomography (CT) was used to evaluate the treatment effect of Anlotinib upon refractory advanced NSCLC patients. Transcriptome profiling was performed to identify the key gene expression alteration in NCI-H1975 cells before and after Anlotinib treatment. NCI-H1975 derived xenograft model was applied to investigate treatment effect and verify anti-angiogenesis mechanism of Anlotinib. Results: Anlotinib induces tumor cytotoxicity on refractory advanced NSCLC patients, NCI-H1975 derived xenograft models and lung adenocarcinoma cell lines. Transcriptome profiling revealed CCL2 blockade could be responsible for Anlotinib-induced anti-angiogenesis. NCI-H1975 derived xenograft model demonstrated Anlotinib-induced CCL2 blockade play an important role in anti-angiogenesis. Conclusions: This study not only offered the first evidence that Anlotinib inhibits angiogenesis via blocking CCL2 expression, but also provided a novel theoretical basis for the application of Anlotinib in advanced NSCLC patients.
Project description:Despite the initial benefit of the tyrosine kinase inhibitors targeting ALK gene fusions in non-small cell lung cancer, resistance to ALK inhibitors is almost inevitable. To determine the acquired resistance mechanism to ALK inhibition, we generated crizotinib-resistant ALK lines by chronically treating H3122 cells (driven by EML4-ALK) with an ALK inhibitor, crizotinib for approximately 3 months. RNA-seq and differential expression analyses were performed to determine the transcriptional changes of H3122-CR cells in comparison to parental H3122 cells. Because we demonstrated EGFR could mediate the early adaptive resistance to crizotinib, we further explored the mechanism that contributes to the resistance to the combination of crizotinib and afatinib. H3122-CAR (crizotinib and afatinib-resistant) cells were generated by treating them with a combination of crizotinib and afatinib for approximately 6 months and then profiled by RNA-seq to determine the associated transcriptional reprogramming.
Project description:Transcriptional profiling was conducted on RNA from 8 xenograft L2987lung tumor tissue samples to identify genes affected by treatment with a VEGFR-2 small molecule inhibitor Experiment Overall Design: Baseline and 14 days post treatement gene expression profiling was performed using 8 xenograft L2987 lung tumor tissue samples to identify genes affected by a VEGFR-2 small molecule inhibitor
Project description:The non-small cell lung carcinoma (NSCLC) PC9 cell line is an established preclinical model for tyrosine kinase inhibitors. Using PC9 cells, we generated EGFR-mutant lung cancer xenografts to study the differences in response between individual cells and cell populations. We performed treatment of PC9 xenograft tumors with the combination of osimertinib and crizotinib as well as single drugs, followed by Drop-seq. The addition of crizotinib was guided by our previous data in PC9 grown in cell culture that identified an erlotinib-resistant drug population sensitive to crizotinib. The results of the xenograft study show that combination treatment targets specific osimertinib-tolerant cell populations but leaves a subset of the population that is tolerant to the combo. Each cell subpopulation is characterized by specific molecular signatures. The results of our study help to address emerging drug resistance that limits clinical usefulness of targeted strategies, particularly in NSCLC.
Project description:Non-small cell lung cancer is the leading cause of cancer death worldwide. Gefitinib, epidermal growth factor receptor tyrosine kinase inhibitor, is the first-line treatment of NSCLC, however, many patients eventually become resistant and experience progressive disease. Therefore, development of efficient therapeutic agents to overcome resistance is urgent. We previously found that citreoviridin, one of toxic mycotoxins derived from fungal species, can suppress lung cancer cell growth by inhibiting the activity of ectopic ATP synthase, but has limited effect on normal cells. Citreoviridin suppresses mitogen-activated protein kinase/extracellular signal-regulated kinase signaling by site-specific dephosphorylation of HSP90AB1 on Serine 255 in gefitinib non-resistant lung cancer CL1-0 cells and xenograft model. We are curious whether signaling pathways underlying citreoviridin-treated gefitinib-acquired resistant lung cancer cells are different. In this study, we showed that citreoviridin inhibited cell proliferation and anchorage-dependent growth of gefitinib-acquired resistance NCI-H1975 cells with EGFR T790M mutation. Furthermore, we explored the dynamic molecular response by temporal phosphoproteomic approach. We identified 1476 phosphopeptides corresponding to 738 phosphoproteins and quantified 1901 phosphorylation sites. There were 274 phosphosites corresponding to 174 phosphorylated proteins significantly differential expressed. Functional enrichment analysis demonstrated that citreoviridin treatment affected chromatin organization, cell cycle and apoptosis. Interestingly, we found that citreovirdin suppressed cell proliferation by site-specific phosphorylation of topoisomerase on serine 1106. Citreovirdin induced double strands breaks, and then leaded to DNA damage response. The DNA lesions triggered cells to cell cycle arrest at S phase for repairing or apoptosis for cell death. The results indicated that citreoviridin could potentially be a therapeutic agent against gefitinib-resistant NSCLC.
Project description:The treatment of advanced prostate cancer has been transformed by novel antiandrogen therapies such as enzalutamide. Using the LnCaP/AR xenograft model, we identified induction of glucocorticoid receptor (GR) expression as a common feature of drug resistant tumors. From a resistant xenograft tumor, we derived a GR expressing resistant subline called LREX. In this model, activation of GR and AR activate a similar but distinguishable set of target genes. LREX' cells were cultured in steroid depleted media and then treated for 8 hours with the indicated drugs in biological triplicates.
Project description:The treatment of advanced prostate cancer has been transformed by novel antiandrogen therapies such as enzalutamide. Using the LnCaP/AR xenograft model, we identified induction of glucocorticoid receptor (GR) expression as a common feature of drug resistant tumors. From a resistant xenograft tumor, we derived a GR expressing resistant subline called LREX' which maintains the resistant phenotype. mRNA expression was used to characterize resistant tissues.
Project description:Purpose: MET is a receptor tyrosine kinase (RTK) that has been considered a druggable target in non-small cell lung cancer (NSCLC). To understand the mechanisms of resistance to MET-TKIs and establish therapeutic strategies, we developed an in vitro model using capmatinib-resistant cell lines (EBC-CR1, CR2, and CR3) derived from the MET-amplified NSCLC cell line EBC-1. Methods: We established capmatinib-resistant NSCLC cell lines from the MET-amplified NSCLC cell line EBC-1 and identified alternative signaling pathways using 3’mRNA sequencing and human phospho-RTK arrays. Copy number alterations were evaluated by quantitative PCR and cell proliferation assay; activation of RTKs and downstream effectors were compared between the parental cell line EBC-1 and the EBC-CR1, -CR2, and -CR3 resistant cell lines. Results: We found that epidermal growth factor (EGFR) mRNA expression and protein activation were increased in EBC-CR1–3 cells compared to EBC-1 cells. EBC-CR1 cells showed EGFR-dependent growth and sensitivity to afatinib, an irreversible EGFR TKI. EBC-CR2 cells, which overexpressed the EGFR-MET heterodimer, responded dramatically to the combination of capmatinib and the phosphoinositide-3 kinase catalytic subunit α (PIK3CA) inhibitor afatinib. In addition, EBC-CR3 cells, which had activated EGFR along with amplified PIK3CA, were sensitive to the combination of afatinib and the PI3Kα inhibitor. Conclusions: Our in vitro studies suggested that activation of EGFR signaling and/or genetic alteration of downstream effectors like PIK3CA were alternative resistance mechanisms used by capmatinib-resistant NSCLC cell lines. In addition, combined treatments with MET, EGFR, and PI3Kα inhibitors may be an effective therapeutic strategy in MET-TKI-resistant NSCLC patients.