Project description:The presentation of virus-derived peptides by HLA class I molecules on the surface of an infected cell and the recognition of these HLA-peptide complexes by, and subsequent activation of, CD8+ cytotoxic T cells provides an important mechanism for immune protection against viruses. Recent advances in proteogenomics have allowed researchers to discover a growing number of unique HLA-restricted viral peptides, resulting in a rapidly expanding repertoire of targets for immunotherapeutics (i.e. bispecific antibodies, engineered T-cell receptors (TCRs), chimeric antigen receptor T-cells (CAR-Ts)) to infected tissues. However, genomic variability between viral strains, such as Hepatitis-B virus (HBV), in combination with differences in patient HLA alleles, make it difficult to develop therapeutics against these targets. To address this challenge, we developed a novel proteogenomics approach for generating patient-specific databases that enable the identification of viral peptides based on the viral transcriptomes sequenced from individual patient liver samples. We also utilized DNA sequencing of patient samples to identify HLA genotypes and assist in target selection. Liver samples from 48 HBV infected patients, primarily from Asia, were examined to reconstruct patient-specific HBV genomes, identify regions within the human chromosomes targeted by HBV integrations and obtain a comprehensive view of HBV peptide epitopes using our HLA class-I (HLA-I) immunopeptidomics discovery platform. Two previously reported HLA associated HBV-derived peptides, HLA-A02 binder FLLTRILTI (S194-202) from the large surface antigen and HLA-A11 binder STLPETTVVRR (C141-151) from the capsid protein were validated by our discovery platform, but both were detected at a very low frequencies. In addition, we identified and validated, using heavy peptide analogues, novel strain-specific HBV-HLA associated peptides, such as GSLPQEHIVQK (P606-616) and variants. Overall, our novel approach can guide the development of bispecific antibody, TCR-T, or CAR-T based therapeutics for the treatment of HBV-related HCC and inform vaccine development.
Project description:MicroRNAs (miRNAs) exhibit essential regulatory functions related to cell growth, apoptosis, development and differentiation. Dysregulated expression of miRNAs is associated with a wide variety of human diseases. As such miRNA signatures are valuable as biomarkers for disease and for making treatment decisions. Hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma (HCC). Here we screened for miRNAs in chronic HBV associated HCC. To evaluate the effect of HBV infection on the change in expression of miRNAs, 12 pairs of samples from HCC and non-tumor tissues (including 6 HBV-positive HCC and 6 HBV-negative HCC and their non-tumor tissues) were collected. The extracted RNAs were evaluated to detect the expression of miRNAs. Using ANOVA to screen the differential expression of miRNAs at P-value ⤠0.01, fold change ⥠2 or ⤠0.5, 225 miRNAs were detected.
Project description:Hepatitis B virus (HBV) infection could cause hepatitis, liver cirrhosis and hepatocellular carcinoma. HBV-mediated pathogenesis is only partially understood, but X protein (HBx) reportedly possesses oncogenic potential. Exosomes are small membrane vesicles with diverse functions released by various cells including hepatocytes, and HBV harnesses cellular exosome biogenesis and export machineries for virion morphogenesis and secretion. Therefore, HBV infection might cause changes in exosome contents with functional implications for both virus and host. In this project, exosome protein content changes induced by HBV and HBx were quantitatively analyzed by SILAC/LC-MS/MS. Exosomes prepared from SILAC-labeled hepatoma cell line Huh-7 transfected with HBx, wildtype or HBx-null HBV replicon plasmids were analyzed by LC-MS/MS.
Project description:The natural history of chronic hepatitis B virus (HBV) infection could be divided in different phases by transaminase and HBV replication levels. However, it remains unknown how the intrahepatic transcriptomes in patients are correlated with the clinical phases. Here, we determined the intrahepatic transcriptomes of chronic hepatitis B patients and examined the role of specific groups of genes, including immune-related genes, in the control of hepatitis B virus infection.
Project description:Hepatitis B virus (HBV) infection could cause hepatitis, liver cirrhosis and hepatocellular carcinoma. HBV-mediated pathogenesis is only partially understood, but X protein (HBx) reportedly possesses oncogenic potential. Exosomes are small membrane vesicles with diverse functions released by various cells including hepatocytes, and HBV harnesses cellular exosome biogenesis and export machineries for virion morphogenesis and secretion. Therefore, HBV infection might cause changes in exosome contents with functional implications for both virus and host. In this project, exosome protein content changes induced by HBV and HBx were quantitatively analyzed by SILAC/LC-MS/MS. Exosomes prepared from SILAC-labeled hepatoma cell line Huh-7 transfected with HBx, wildtype or HBx-null HBV replicon plasmids were analyzed by LC-MS/MS.
Project description:Hepatitis B virus (HBV) is an enveloped, coated, non-cytopathic and hepatotropic partially double-stranded DNA virus in the family Hepadnaviridae genus Orthohepadnavirus. Despite significant progress in the availability of safe vaccines and antiviral therapies against HBV, it still affects approximately 257 million people worldwide and is responsible for about 887,000 deaths per year around the world [4]. HBV infection, which are associated with acute and chronic liver failure responses to viruses attacked the liver, can result in inactive carrier state, chronic hepatitis, or fulminant hepatitis and put them at high risk to develop advanced liver fibrosis and cirrhosis, and even hepatocellular cancer. Many viral factors, which could affect the disparity of clinical outcomes or disease prognosis during chronic HBV infection, have been reported in previous studies; among them, the viral genotype, as well as HBV mutations ascribing the virus to a certain phenotype, was reported to be the most important factor influencing viral pathogenesis, including the change of host immune recognition, the enhanced virulence with increased HBV replication and the facilitation of cell attachment or penetration.
Project description:The same entry pathway is shared by HBV and HDV. Both viruses attach to hepatocytes via heparansulfate proteoglycan and utilize sodium taurocholate co-transporting polypeptide (NTCP) for a specifc entry. This specific entry step is inhibited by Myrcludex B, a 47-aa lipopeptide myristoylated at the N-terminus. Here we compared the cellular response in the gene expression level triggerred by both viruses. The microarray data shows that HBV infection leads to a silent response but HDV infection triggers high level of innate response such as inteferon-stimulated genes (ISG) expression. Moreover, the response depends on the hepatic cell lines used for infection. Compared to HepG2 cells, HuH7 can not induce ISG even infected by HDV. Abstract of manuscript: Background & aims: Hepatitis B virus (HBV) and D virus (HDV) co-infections cause the most severe form of viral hepatitis. HDV induces an innate immune response, but it is unknown how the host cell senses HDV and if this defense affects HDV replication. We aim to characterize interferon (IFN) activation by HDV, identify the responsible sensor and evaluate the effect of IFN on HDV replication. Methods: HDV and HBV susceptible hepatoma cell lines and primary human hepatocytes (PHH) were used for infection studies. Viral markers and cellular gene expression were analyzed at different time points after infection. Pattern recognition receptors (PRRs) required for HDV-mediated IFN activation and the impact on HDV replication were studied using stable knock-down or overexpression of the PRRs. Results: Microarray analysis revealed that HDV but not HBV infection activated a broad range of interferon stimulated genes (ISGs) in HepG2NTCP cells. HDV strongly activated IFN-β and IFN-λ in cell lines and PHH. HDV induced IFN levels remained unaltered upon RIG-I or TLR3 knock-down, but were almost completely abolished upon MDA5 depletion. Conversely, overexpression of MDA5 but not RIG-I and TLR3 in Huh7.5NTCP cells partially restored ISG induction. During long-term infection, IFN levels gradually diminished in both HepG2NTCP and HepaRGNTCP cell lines. MDA5 depletion had little effect on HDV replication despite dampening HDV-induced IFN response. Moreover, treatment with type I or type III IFNs did not abolish HDV replication. Conclusions: Active replication of HDV induces an IFN-β/λ response, which is predominantly mediated by MDA5. This IFN response and exogenous IFN treatment have only a moderate effect on HDV replication in vitro indicating the adaption of HDV replication to an IFN activated state.
Project description:Mechanisms of poor responses to vaccines remain unknown. Hepatitis B virus-naïve elderly subjects received three vaccines, including a vaccine against hepatitis B virus (HBV). Transcriptomic profilling of blood collected pre-vaccination and post-vaccination was performed in order to identify candidate biomarkers of antibody response to the different vaccines.