Project description:The retinoblastoma tumor suppressor protein (Rb) regulates early G1 phase checkpoints, including the DNA damage response, as well as cell cycle exit and differentiation. The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 partially inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, resulting in release of E2F transcription factors. However, this model remains largely unproven biochemically and the biologically active form(s) of Rb remains unknown. Here we find that Rb is un-phosphorylated in G0 cells and becomes exclusively mono-phosphorylated throughout all of early G1 phase by cyclin D:Cdk4/6. Early G1 phase mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but each shows a preferential binding pattern to specific E2F1-4 transcription factors. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by a quantum hyper-phosphorylation (>12 phosphates/Rb). Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription. In contrast, a non-phosphorylatable ?Cdk-Rb allele was non-functional for regulating a DNA damage response, but functional for driving cell cycle exit and differentiation during myogenesis. These observations fundamentally change our understanding of G1 cell cycle progression and show that there is no progressive multi-phosphorylation or hypo-phosphorylation inactivation of Rb during early G1 phase by cyclin D:Cdk4/6. Instead, cyclin D:Cdk4/6 generates functionally active, mono-phosphorylated Rb that is the only Rb isoform present in cells during early G1 phase.
Project description:The retinoblastoma tumor suppressor protein (Rb) regulates early G1 phase checkpoints, including the DNA damage response, as well as cell cycle exit and differentiation. The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 partially inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, resulting in release of E2F transcription factors. However, this model remains largely unproven biochemically and the biologically active form(s) of Rb remains unknown. Here we find that Rb is un-phosphorylated in G0 cells and becomes exclusively mono-phosphorylated throughout all of early G1 phase by cyclin D:Cdk4/6. Early G1 phase mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but each shows a preferential binding pattern to specific E2F1-4 transcription factors. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by a quantum hyper-phosphorylation (>12 phosphates/Rb). Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription. In contrast, a non-phosphorylatable ?Cdk-Rb allele was non-functional for regulating a DNA damage response, but functional for driving cell cycle exit and differentiation during myogenesis. These observations fundamentally change our understanding of G1 cell cycle progression and show that there is no progressive multi-phosphorylation or hypo-phosphorylation inactivation of Rb during early G1 phase by cyclin D:Cdk4/6. Instead, cyclin D:Cdk4/6 generates functionally active, mono-phosphorylated Rb that is the only Rb isoform present in cells during early G1 phase. Global transcriptional analysis of murine embryonic fibroblasts (MEFs) with conditional deletion of the endogenous RB gene by treatment with cell permeable TAT-Cre. Comparison to unaltered MEFs and MEFs with physiological level of exogenous wildtype or phospho-mutant RB expressed at time of RB gene deletion.
Project description:Genomic aberrations of Cyclin D1 (CCND1) and CDK4 in neuroblastoma indicate that dysregulation of the G1 entry checkpoint is an important cell cycle aberration in this pediatric tumor. Here we report that analysis of Affymetrix expression data of primary neuroblastic tumors shows an extensive over-expression of Cyclin D1 and CDK4 which correlates with histological subgroups and prognosis respectively. Immunohistochemical analysis demonstrated an over-expression of Cyclin D1 in neuroblasts and a low Cyclin D1 expression in all cell types in ganglioneuroma. This suggests an involvement of G1 regulating genes in neuronal differentiation processes which we further evaluated using RNA interference against Cyclin D1 and its kinase partner CDK4 in several neuroblastoma cell lines. This resulted in pRb pathway inhibition as shown by an almost complete disappearance of CDK4 specific pRb phosphorylation; reduction of E2F transcriptional activity and a decrease of Cyclin A protein levels. The Cyclin D1 and CDK4 knock-down resulted in a significant reduction in cell proliferation, a G1 specific cell cycle arrest and moreover an extensive neuronal differentiation. Affymetrix microarray profiling of siRNA treated cells revealed a shift in expression profile towards a neuronal phenotype. Several new potential downstream players are identified. We conclude that neuroblastoma functionally depend on over-expression of G1 regulating genes to maintain their undifferentiated phenotype. Experiment Overall Design: The Cell line IMR-32 at time point 0 and transiently transfected with siRNA against GFP, Cyclin D1 and CDK4 at time point 48 hours. All experiments are biological triplicates.
Project description:Yeast cell cycle transcription dynamics in two S. cerevisae strains: BF264-15DU (MATa ade1 his2 leu2-3, 112 trp1-1 ura3Dns, bar1) [referred to as wild type] and a mutant of the wild type strain, clb1,2,3,4,5,6 GAL1-CLB1, [referred to as cyclin mutant] that does not express S-phase and mitotic cyclins. Both strains were synchronized by elutriation and released into YEP 2% dextrose/1M sorbitol at 30c. 15 samples were taken at 16 min intervals covering ~2 cycles in wild-type and ~1.5 cycles for the mutants. A significant fraction of the Saccharomyces cerevisiae genome is transcribed periodically during the cell division cycle, suggesting that properly timed gene expression is important for regulating cell cycle events. Genomic analyses of transcription factor localization and expression dynamics suggest that a network of sequentially expressed transcription factors could control the temporal program of transcription during the cell cycle. However, directed studies interrogating small numbers of genes indicate that their periodic transcription is governed by the activity of cyclin-dependent kinases (CDKs). To determine the extent to which the global cell cycle transcription program is controlled by cyclin/CDK complexes, we compared genome-wide transcription dynamics in wild type budding yeast to mutants that do not express S-phase and mitotic cyclins. Experiment Overall Design: Cell cycle synchrony/time series experiments. G1 cells collected by elutriation was examined over time for 2 cell cycles. Strains compared: wild type vs cyclin mutants. 15 samples per time course at 16 min resolution. 2 biological replicates per strain.
Project description:Genomic aberrations of Cyclin D1 (CCND1) and CDK4 in neuroblastoma indicate that dysregulation of the G1 entry checkpoint is an important cell cycle aberration in this pediatric tumor. Here we report that analysis of Affymetrix expression data of primary neuroblastic tumors shows an extensive over-expression of Cyclin D1 and CDK4 which correlates with histological subgroups and prognosis respectively. Immunohistochemical analysis demonstrated an over-expression of Cyclin D1 in neuroblasts and a low Cyclin D1 expression in all cell types in ganglioneuroma. This suggests an involvement of G1 regulating genes in neuronal differentiation processes which we further evaluated using RNA interference against Cyclin D1 and its kinase partner CDK4 in several neuroblastoma cell lines. This resulted in pRb pathway inhibition as shown by an almost complete disappearance of CDK4 specific pRb phosphorylation; reduction of E2F transcriptional activity and a decrease of Cyclin A protein levels. The Cyclin D1 and CDK4 knock-down resulted in a significant reduction in cell proliferation, a G1 specific cell cycle arrest and moreover an extensive neuronal differentiation. Affymetrix microarray profiling of siRNA treated cells revealed a shift in expression profile towards a neuronal phenotype. Several new potential downstream players are identified. We conclude that neuroblastoma functionally depend on over-expression of G1 regulating genes to maintain their undifferentiated phenotype. Keywords: Neuroblastoma, CCND1, Cyclin D1, CDK4
Project description:Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities associated with successive waves of G1, S and mitotic cyclins. Alternatively, the gradual quantitative rise of Cdk activity from G1 phase to mitosis could lead to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in the budding yeast S. cerevisiae. S-phase cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. The single cyclin can in addition replace G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot sustain proliferation. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.
Project description:Protein Kinase C alpha (PKC) is associated with progression and poor prognosis in head and neck cancer. Previous studies have demonstrated that PKC sustains the proliferative signal by increasing cyclin E expression, leading to enhanced E2F target gene transcription and DNA synthesis. Here we show that PKC increases DNA synthesis through inhibition of the microRNA, miR-15a, upregulating translation of its target cyclin E. Importantly, gene expression and qRT-PCR analysis of primary squamous cell carcinoma tumors of the head and neck (SCCHN) reveals a significant negative correlation between PKCï¡ and miR-15a levels. In contrast to normal cell cycle initiation, PKC decreases microRNA expression, leading first to increased cyclin E protein followed by enhanced transcription of cyclin E and other DNA synthesis mediators. These results identify a signaling network regulated by PKC whereby constitutive kinase activation switches the system to feed forward, overriding normal regulation of cell cycle progression through a post-transcriptional mechanism involving microRNAs. This reprogramming of the network is likely a more general phenomenon that can account for the oncogenic potency of established signaling pathways. Keywords: miRNA; dose response; cancer 6 treated samples across two time points hybridized to paired time 0, untreated controls
Project description:Cyclin C was cloned as a growth-promoting G1 cyclin, and was also shown to regulate gene transcription. Here we report that in vivo cyclin C acts as a haploinsufficient tumour suppressor, by controlling Notch1 oncogene levels. Cyclin C activates an 'orphan' CDK19 kinase, as well as CDK8 and CDK3. These cyclin-C-CDK complexes phosphorylate the Notch1 intracellular domain (ICN1) and promote ICN1 degradation. Genetic ablation of cyclin C blocks ICN1 phosphorylation in vivo, thereby elevating ICN1 levels in cyclin-C-knockout mice. Cyclin C ablation or heterozygosity collaborates with other oncogenic lesions and accelerates development of T-cell acute lymphoblastic leukaemia (T-ALL). Furthermore, the cyclin C encoding gene CCNC is heterozygously deleted in a significant fraction of human T-ALLs, and these tumours express reduced cyclin C levels. We also describe point mutations in human T-ALL that render cyclin-C-CDK unable to phosphorylate ICN1. Hence, tumour cells may develop different strategies to evade inhibition by cyclin C.
Project description:N6-methyladenosine (m6A) modification is the major post-transcriptional modification present in mammalian mRNA. m6A controls fundamental biological processes including cell proliferation, but the molecular mechanism remains unclear. Herein, we demonstrate that the m6A demethylase fat mass and obesity-associated (FTO) controls the cell cycle by targeting cyclin D1, the key regulator required for G1 phase progression. FTO silencing suppressed cyclin D1 expression and induced G1 arrest. FTO depletion upregulated cyclin D1 m6A modification, which in turn accelerated the degradation of cyclin D1 mRNA. Importantly, m6A modification of cyclin D1 oscillates in a cell cycle-dependent manner; m6A levels were suppressed during the G1 phase and enhanced during other phases. Low m6A levels during G1 were associated with nuclear translocation of FTO from the cytosol. Furthermore, nucleocytoplasmic shuttling of FTO is regulated by Casein Kinase II-mediated phosphorylation at Thr 150 of FTO. Our results highlight the role of m6A in regulating cyclin D1 mRNA stability, and add a new layer of complexity to cell cycle regulation.
Project description:The cell cycle is thought to be initiated by cyclin-dependent kinases (Cdk) inactivating transcriptional inhibitors of cell cycle gene-expression. In budding yeast, the G1 cyclin Cln3-Cdk1 complex is thought to directly phosphorylate Whi5, thereby releasing the transcription factor SBF and committing cells to division. Here, we report that Cln3-Cdk1 does not phosphorylate Whi5, but instead phosphorylates the RNA Polymerase II subunit Rpb1’s C-terminal domain (CTD) on S5 of its heptapeptide repeats. Cln3-Cdk1 binds SBF-regulated promoters(8) and Cln3’s function can be performed by the canonical S5 kinase Ccl1-Kin28 when synthetically recruited to SBF. Thus, Cln3-Cdk1 triggers cell division by phosphorylating Rpb1 at SBF-regulated promoters to promote transcription. Our findings blur the distinction between cell cycle and transcriptional Cdks to highlight the ancient relationship between these processes.