Project description:The periodontal ligament(PDL) and dental pulp tissues of human permanent teeth have a number of differences in their developmental processes, histological characteristics and functions. It can be figured out that these differences are attributable to genetic backgrounds of their cells organized tissues. The purpose of this study was to identify the gene-expression profiles and their molecular biological differences of periodontal ligament and dental pulp tissues from the human permanent teeth.
Project description:The aim of this study was to evaluate and compare the gene expression profiles of dental follicle and periodontal ligament in humans, which can possibly explain their functions of dental follicle and PDL such as eruption coordination and stress resorption. That may apply this information to clinical problem like eruption disturbance and to periodontal tissue engineering. PDL samples were obtained from permanent premolars (n=11) and dental follicle samples were obtained during extraction of supernumerary teeth (n=4). Comparative cDNA microarray analysis revealed several differences in gene expression between permanent PDL and dental follicles.
Project description:Periodontitis can impair the osteogenic differentiation of human periodontal mesenchymal stem cells, but the underlying molecular mechanisms are still poorly understood. Long noncoding RNAs (lncRNAs) have been demonstrated to play significant roles under both physiologic and pathological conditions. We performed comprehensive lncRNAs profiling by lncRNA microarray to identify differentially expressed long noncoding RNA expression between Periodontal ligament stem cells from healthy Periodontal tissue and periodontal ligament stem cells from inflammatory periodontal tissue. Our analysis identified 233 lncRNAs and 423 mRNAs that were differently expressed (fold change >2.0, p-value < 0.05) between the two groups of cells. The GO analysis revealed that the significantly down-regulated biological processes included multicellular organismal process, developmental process and multicellular organismal development and the significantly up-regulated biological processes included cellular process, biological regulation and response to stimulus in periodontal ligament stem cells from inflammatory periodontal tissue. The Pathway analysis revealed that the differentially expressed mRNAs may involved in Focal adhesion, ECM-receptor interaction, Bacterial invasion of epithelial cells, Long-term depression, Circadian entrainment and HIF-1 signaling pathway. Two-condition experiment, periodontal ligament stem cells from healthy periodontal tissue (hPDLSCs) vs. periodontal ligament stem cells from inflammatory periodontal tissue (pPDLSCs), Biological replicates: 3 control replicates (hPDLSCs), 3 testing replicates (pPDLSCs).
Project description:Differentially expressed long noncoding RNA expression between periodontal ligament stem cells from healthy periodontal tissue and periodontal ligament stem cells from inflammatory periodontal tissue.
Project description:Periodontitis can impair the osteogenic differentiation of human periodontal mesenchymal stem cells, but the underlying molecular mechanisms are still poorly understood. Long noncoding RNAs (lncRNAs) have been demonstrated to play significant roles under both physiologic and pathological conditions. We performed comprehensive lncRNAs profiling by lncRNA microarray to identify differentially expressed long noncoding RNA expression between Periodontal ligament stem cells from healthy Periodontal tissue and periodontal ligament stem cells from inflammatory periodontal tissue. Our analysis identified 233 lncRNAs and 423 mRNAs that were differently expressed (fold change >2.0, p-value < 0.05) between the two groups of cells. The GO analysis revealed that the significantly down-regulated biological processes included multicellular organismal process, developmental process and multicellular organismal development and the significantly up-regulated biological processes included cellular process, biological regulation and response to stimulus in periodontal ligament stem cells from inflammatory periodontal tissue. The Pathway analysis revealed that the differentially expressed mRNAs may involved in Focal adhesion, ECM-receptor interaction, Bacterial invasion of epithelial cells, Long-term depression, Circadian entrainment and HIF-1 signaling pathway.