Project description:Acinetobacter baumannii AB042, a triclosan-resistant mutant, was examined for modulated gene expression using whole genome sequencing, transcriptomics, and proteomics in order to understand the mechanism of triclosan-resistance as well as its impact on A. Baumannii.
Project description:In this study the transcriptomes of Acinetobacter baumannii strains ATCC 17978 and 17978hm were compared. Strain 17978hm is a hns knockout derivative of strain ATCC 17978. Strain 17978hm displays a hyper-motile phenotype on semi-solid Mueller-Hinton (MH) media (0.25% agar). ATCC 17978 and 17978hm from an 37C overnight culture were transferred to the centre of the semi-solid MH plate and incubated at 37C for 8 hours. Only 17978hm cells displayed a motile phenotype and covered the complete surface of the plate. These motile 17978hm cells and the non-motile wild-type ATCC 17978 cells were harvested and RNA was isolated. The comparative transcriptome analysis was performed using the FairPlay labeling kit and a custom made Agilent MicroArray with probes designed to coding regions of the ATCC 17978 genome. The data was analyzed using Agilent GeneSpring GX9 and the significance analysis of microarray MS Excel add-on.
Project description:In this study the transcriptomes of Acinetobacter baumannii strains ATCC 17978 and 17978hm were compared. Strain 17978hm is a hns knockout derivative of strain ATCC 17978. Strain 17978hm displays a hyper-motile phenotype on semi-solid Mueller-Hinton (MH) media (0.25% agar). ATCC 17978 and 17978hm from an 37C overnight culture were transferred to the centre of the semi-solid MH plate and incubated at 37C for 8 hours. Only 17978hm cells displayed a motile phenotype and covered the complete surface of the plate. These motile 17978hm cells and the non-motile wild-type ATCC 17978 cells were harvested and RNA was isolated. The comparative transcriptome analysis was performed using the FairPlay labeling kit and a custom made Agilent MicroArray with probes designed to coding regions of the ATCC 17978 genome. The data was analyzed using Agilent GeneSpring GX9 and the significance analysis of microarray MS Excel add-on. The motile 17978hm cells and the non-motile wild-type ATCC 17978 cells were harvested and RNA was isolated. The comparative transcriptome analysis was performedThe probes on the microarray cover all predicted open reading frames (at least 4 per ORF) and additional replicates of housekeeping genes of the A. baumannii ATCC 17978 genome .
Project description:RNA sequencing was carried out by ARK genomics, Edinburgh on an Illumina HiSeq platform to compare gene expression in Acinetobacter baumannii strain AYE and an adeRS deletion mutant in this strain.
Project description:RNA sequencing was carried out at BGI, Hong Kong on an Illumina HiSeq platform to compare gene expression in Acinetobacter baumannii strain S1 and an adeAB deletion mutant in this strain.
Project description:RNA sequencing was carried out at the University of Birmingham on an Illumina MiSeq platform to compare gene expression in Acinetobacter baumannii strain AYE and an adeB deletion mutant in this strain.
Project description:In recent years, the Gram-negative bacterium Acinetobacter baumannii has garnered considerable attention for its unprecedented capacity to rapidly develop resistance to antibacterial therapeutics. This is coupled with the seemingly epidemic emergence of new hyper-virulent strains. Although strain-specific differences for A. baumannii isolates have been well described, these studies have primarily focused on proteinaceous factors. At present, only limited publications have investigated the presence and role of small regulatory RNA (sRNA) transcripts. Herein, we perform such an analysis, describing the RNA-seq-based identification of 78 A. baumannii sRNAs in the AB5075 background. Together with six previously identified elements, we include each of these in a new genome annotation file, which will serve as a tool to investigate regulatory events in this organism. Our work reveals that the sRNAs display high expression, accounting for >50 % of the 20 most strongly expressed genes. Through conservation analysis we identified six classes of similar sRNAs, with one found to be particularly abundant and homologous to regulatory, C4 antisense RNAs found in bacteriophages. These elements appear to be processed from larger transcripts in an analogous manner to the phage C4 molecule and are putatively controlled by two further sRNAs that are strongly antisense to them. Collectively, this study offers a detailed view of the sRNA content of A. baumannii, exposing sequence and structural conservation amongst these elements, and provides novel insight into the potential evolution, and role, of these understudied regulatory molecules. This study is based on the annotation of novel sRNAs on basis of an Acinetobacter baumannii RNA sequencing dataset. Each sample was generated by pooling three independent biological replicate RNA preps
Project description:The experiment contains native Tn-seq data for Acinetobacter baumannii strain AB5075 with different genetic alterations. The strain was grown at 37 degrees in LB medium and genomic DNA was isolated. We then used PCR to select for DNA regions containing a junction between ISAba13 and chromosomal DNA. Libraries were then prepared using these DNA fragments.
Project description:A major reservoir for spread of the emerging pathogen Acinetobacter baumannii is hopsital surfaces, where bacteria persist in a desiccated state. To identify gene products influencing desiccation survival, a transposon sequencing (Tn-seq) screen was performed. Using this approach, we identified genes both positively and negatively impacting the desiccation tolerance of A. baumannii.