Project description:Rhizobium tropici CIAT899 is a nodule-forming α-proteobacterium displaying intrinsic resistance to several abiotic stress conditions such as low soil pH and high temperatures, which are common in tropical environments. It is a good competitor for Phaseolus vulgaris (common bean) nodule occupancy at low pH values, however little is known about the genetic or physiological basis of acid tolerance about gene expression under acidic conditions. To identify genes responding to pH stress we studied the transcriptomes of cells grown under different pH conditions. RNA was extracted from cells grown for several generations in minimal medium at 6.8 or 4.5 (adapted cells). In addition, we acid-shocked cells pre-grown at pH 6.8 for 45 minutes at pH 4.5. Transcriptomes were determined by RNA-Seq. From a total of 6289 protein-coding genes, 383 were found to be differentially expressed under acidic conditions versus control, among which 351 were induced and 32 repressed; only 11 genes were induced upon acid shock. The acid stress response of R. tropici CIAT899 is versatile: we found genes encoding response regulators and membrane transporters, but also enzymes involved in amino acid and carbohydrate metabolism and proton extrusion. Our findings enhance our understanding of the core genes that are important during the acid stress response in R. tropici.
Project description:Rhizobium tropici CIAT899 is a nodule-forming α-proteobacterium displaying intrinsic resistance to several abiotic stress conditions such as low pH and high temperatures, which are common in tropical environments. It is a good competitor for Phaseolus vulgaris (common bean) nodule occupancy at low pH values, however little is known about the genetic and physiological basis of the tolerance to acidic conditions. To identify genes in R. tropici involved in pH stress response we combined two different approaches: (1) A Tn5 mutant library of R. tropici CIAT899 was screened and 26 acid-sensitive mutants were identified. For 17 of these mutants, the transposon insertion sites could be identified. (2) We also studied the transcriptomes of cells grown under different pH conditions using RNA-Seq. RNA was extracted from cells grown for several generations in minimal medium at 6.8 or 4.5 (adapted cells). In addition, we acid-shocked cells pre-grown at pH 6.8 for 45 min at pH 4.5. Of the 6,289 protein-coding genes annotated in the genome of R. tropici CIAT 899, 383 were differentially expressed under acidic conditions (pH 4.5) vs. control condition (pH 6.8). Three hundred and fifty one genes were induced and 32 genes were repressed; only 11 genes were induced upon acid shock. The acid stress response of R. tropici CIAT899 is versatile: we found genes encoding response regulators and membrane transporters, enzymes involved in amino acid and carbohydrate metabolism and proton extrusion, in addition to several hypothetical genes. Our findings enhance our understanding of the core genes that are important during the acid stress response in R. tropici.
Project description:The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species.
Project description:To verify the potential of metabolites extracted from Rhizobium tropici to trigger the priming of defense responses in cruciferous plants, we analyzed the expression of defense-related genes by qRT-PCR. Brassica oleracea var. capitata, susceptible to Xanthomonas campestris pv. campestris, were grown in greenhouse conditions. At 18 days after sowing, plants were inoculated with 1 mL of 1% concentrated metabolites produced by R. tropici (CM-RT) in the root. In a second experiment, leaves were sprayed with 1 mL of a solution containing 1% CM-RT. Aerial and root tissue were collected separately at 0 (non-treated control condition), 24, and 48 h after application, submitted to RNA extraction and gene expression analysis by qRT-PCR. The results showed that, after root treatment with CM-RT, most evaluated genes were upregulated at 24 h after application and downregulated at 48 h after application in roots, while in leaves, genes were downregulated both at 24 and 48 h after application. On the other hand, leaf treatment with CM-RT showed that most evaluated genes in leaves and roots were upregulated at 24 and 48 h after application. These results indicate that the effect of CM-RT applied in roots seems restricted to the applied region and is not sustained, while the application in leaves results in a more systemic response and maintenance of the effect of CM-RT for a longer period. The results obtained in this study emphasize the biotechnological potential of using metabolites of R. tropici as an elicitor of active defense responses in plants.