Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:We employed a genome-wide microarray approach to obtain a profile of the transcriptional events in ciprofloxacin-treated EPEC shedding light on how ciprofloxacin affects EPEC transcriptional events and growth, aside from resistance mechanisms, and how this bacterium tolerates antibiotic stress. Sample of each culture immediately after the addition of ciprofloxacin (t0), 45 min (t45), 90 min (t90), 135 min (t135), and 180 min (t180), ciprofloxacin induced gene expression in EPEC Deng strain were measure by microarray statistical analysis
Project description:To investigate the regulatory targets of the RegR virulence regulon of rabbit specific enteropathogenic Escherichia coli strain E22
Project description:To investigate the regulatory targets of the RegR virulence regulon of rabbit specific enteropathogenic Escherichia coli strain E22 Single factor (genotype) with dye swaps.
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:To investigate and compare transcriptomic changes of Escherichia coli K-12 MG1655, the bacterium was exposed to nine antibiotics (tetracycline, mitomycin C ,imipenem, ceftazidime, kanamycin, ciprofloxacin, polymyxin E, erythromycin, and chloramphenicol) , and RNA-Seq was performed to determine comparative transcriptomic changes.
Project description:The transcriptional changes in Escherichia coli upon induction of the SOS response are investigated by utilizing custom designed oligonucleotide microarrays. Keywords: Gene expression during the SOS response in Escherichia coli
Project description:Protein aggregates occur in all living cells due to misfolding of proteins. In bacteria, protein aggregation is associated with cellular inactivity, which is related to dormancy and tolerance to stressful conditions, including the exposure to antibiotics. In Escherichia coli, the membrane toxin TisB is an important factor for dormancy and antibiotic tolerance upon DNA damage mediated by the fluoroquinolone antibiotic ciprofloxacin. Here, we show that TisB provokes protein aggregation in response to ciprofloxacin. The stress response and TisB-dependent protein aggregates are analyzed by LC-MS.