Project description:Bats harbor highly virulent viruses that can infect other mammals, including humans, posing questions about their immune tolerance mechanisms. Bat cells employ multiple strategies to limit virus replication and virus-induced immunopathology, but the coexistence of bats and fatal viruses remains poorly understood. Here, we investigated the antiviral RNA interference (RNAi) pathway in bat cells and discovered that they have an enhanced antiviral RNAi response, producing canonical viral small interfering RNAs (vsiRNAs) upon Sindbis virus (SINV) infection that were missing in human cells. Disruption of Dicer function resulted in increased viral load for three different RNA viruses in bat cells, indicating an interferon-independent antiviral pathway. Furthermore, our findings reveal the simultaneous engagement of Dicer and pattern-recognition receptors (PRRs), such as retinoic acid-inducible gene I (RIG-I), with double-stranded RNA, suggesting that Dicer attenuates the interferon response initiation in bat cells. These insights advance our comprehension of the distinctive strategies bats employ to coexist with viruses.
Project description:In mammals, early resistance to viruses relies on interferons, which protect differentiated but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialised Dicer protein that cleaves viral double stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. Here we identify an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses, including Zika virus and SARS-CoV-2, by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity in which different cell-intrinsic antiviral pathways are tailored to the differentiation status of cells.
Project description:Bats harbor highly virulent viruses that can infect other mammals, including humans, posing questions about their immune tolerance mechanisms. Bat cells employ multiple strategies to limit virus replication and virus-induced immunopathology, but the coexistence of bats and fatal viruses remains poorly understood. Here, we investigated the antiviral RNA interference (RNAi) pathway in bat cells and discovered that they have an enhanced antiviral RNAi response, producing canonical viral small interfering RNAs (vsiRNAs) upon Sindbis virus (SINV) infection that were missing in human cells. Disruption of Dicer function resulted in increased viral load for three different RNA viruses in bat cells, indicating an interferon-independent antiviral pathway. Furthermore, our findings reveal the simultaneous engagement of Dicer and pattern-recognition receptors (PRRs), such as retinoic acid-inducible gene I (RIG-I), with double-stranded RNA, suggesting that Dicer attenuates the interferon response initiation in bat cells. These insights advance our comprehension of the distinctive strategies bats employ to coexist with viruses.
Project description:In RNA interference (RNAi), long double-stranded RNA (dsRNA) is cleaved by Dicer endonuclease into small RNA interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates adopted sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi. Next, we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: Coxsackievirus B3 (CVB3) and encephalomyocarditis virus (ECMV) from Picornaviridae; tick-borne encephalitis virus (TBEV) from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice had no antiviral effect. This result supports insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also report that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
Project description:In RNA interference (RNAi), long double-stranded RNA (dsRNA) is cleaved by Dicer endonuclease into small RNA interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates adopted sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi. Next, we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: Coxsackievirus B3 (CVB3) and encephalomyocarditis virus (ECMV) from Picornaviridae; tick-borne encephalitis virus (TBEV) from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice had no antiviral effect. This result supports insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also report that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
Project description:In RNA interference (RNAi), long double-stranded RNA (dsRNA) is cleaved by Dicer endonuclease into small RNA interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates adopted sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi. Next, we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: Coxsackievirus B3 (CVB3) and encephalomyocarditis virus (ECMV) from Picornaviridae; tick-borne encephalitis virus (TBEV) from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice had no antiviral effect. This result supports insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also report that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
Project description:In RNA interference (RNAi), long double-stranded RNA (dsRNA) is cleaved by Dicer endonuclease into small RNA interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates adopted sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian RNAi is thus a rudimentary pathway of unclear significance. To investigate its antiviral potential, we modified mouse Dicer locus to express a truncated variant (DicerΔHEL1) known to stimulate RNAi. Next, we analyzed how DicerΔHEL1/wt mice respond to four RNA viruses: Coxsackievirus B3 (CVB3) and encephalomyocarditis virus (ECMV) from Picornaviridae; tick-borne encephalitis virus (TBEV) from Flaviviridae; and lymphocytic choriomeningitis virus (LCMV) from Arenaviridae. Increased Dicer activity in DicerΔHEL1/wt mice had no antiviral effect. This result supports insignificant antiviral function of endogenous mammalian RNAi in vivo. However, we also report that sufficiently high expression of DicerΔHEL1 suppressed LCMV in embryonic stem cells and in a transgenic mouse model. Altogether, mice with increased Dicer activity offer a new benchmark for identifying and studying viruses susceptible to mammalian RNAi in vivo.
Project description:We recently reported that an orthologue of STING regulates infection by picorna-like viruses in drosophila. Here, we show that injection of flies with 2’3’-cGAMP can induce expression of dSTING-regulated genes. Analysis of the transcriptome of 2’3’-cGAMP injected flies reveals a complex pattern of response, with early and late induced genes. Our results reveal that dSTING regulates an NF-κB -dependent antiviral program, which predates the emergence of Interferon Regulatory Factors and interferons in vertebrates.
Project description:Background: RNA silencing pathways play critical roles in gene regulation, virus infection, and transposon control. RNA interference (RNAi) is mediated by small interfering RNAs (siRNAs), which are liberated from double stranded (ds) RNA precursors by Dicer and direct the RNA-induced silencing complex (RISC) to target transcripts. Recent efforts have uncovered important principles governing small RNA (smRNA) sorting into RISC, yet mechanisms defining substrate selection by Dicer proteins remain uncharacterized. Methodology: To better characterize Dicer-2 substrates in Drosophila, we examined the antiviral RNAi response, which generates virus-derived siRNAs from viral RNA. Using high-throughput sequencing, we found that diverse viruses were uniquely targeted; substrates included dsRNA replication intermediates and intramolecular RNA stem loops. smRNA distribution patterns from viral and synthetic dsRNA precursors were highly reproducible, and machine learning techniques identified characteristics of precursor molecules and smRNA duplexes important in determining relative smRNA abundance. Significance: To our knowledge, this study provides the first description of the rules governing Dicer-2 substrate selection, which has important implications for exogenous RNA silencing technologies and the development of smRNA-based antiviral therapeutics. virus-derived siRNA (vsiRNA) expression comparison between control and 4 different virus-infected cells in control as well as 5 different RNAi pathway protein knock-downs in Drosophila dl1 cells
Project description:Background: RNA silencing pathways play critical roles in gene regulation, virus infection, and transposon control. RNA interference (RNAi) is mediated by small interfering RNAs (siRNAs), which are liberated from double stranded (ds) RNA precursors by Dicer and direct the RNA-induced silencing complex (RISC) to target transcripts. Recent efforts have uncovered important principles governing small RNA (smRNA) sorting into RISC, yet mechanisms defining substrate selection by Dicer proteins remain uncharacterized. Methodology: To better characterize Dicer-2 substrates in Drosophila, we examined the antiviral RNAi response, which generates virus-derived siRNAs from viral RNA. Using high-throughput sequencing, we found that diverse viruses were uniquely targeted; substrates included dsRNA replication intermediates and intramolecular RNA stem loops. smRNA distribution patterns from viral and synthetic dsRNA precursors were highly reproducible, and machine learning techniques identified characteristics of precursor molecules and smRNA duplexes important in determining relative smRNA abundance. Significance: To our knowledge, this study provides the first description of the rules governing Dicer-2 substrate selection, which has important implications for exogenous RNA silencing technologies and the development of smRNA-based antiviral therapeutics.