Project description:Capacity of exercise and performance is the most valuable in the horses. They have been selected for strength, speed, and indurance trait. Athletic pheno types are influenced markedly by environment, management, and training. However, it has long been accepted that there are underlying genetic factors. To determine altered mRNA expression in circulating leukocytes of horses induced by exercise. Healthy neutered male warmblood horses were subjected to indoor exercise (trotting with alternative cantering for 6o minutes). Peripheral blood was collected from the jugular vein before and after the exercise, and subsequently buffy coat leukocytes were isolated by centrifugation. Total RNAs was isolated. Cyanine 3-labeled cRNA (complementary RNA) was generated from Agilentâs Low RNA Input Linear Amplification kit with 500 ng total RNA. Labeled cRNA was applied microarray (Agilent technologies, 8x60K) using Agilentâs Gene Expression Hybridization Kit. The present study revealed a subset of mRNAs in equine peripheral blood leukocytes affected by exercise, providing background information for genes associated with exercise in warm-blood horses. Three healthy, gelding warmblood horses between 9 and 17 yr were selected. 6 samples were collected containing 3 samples before exercise and 3 samples after exercise
Project description:Capacity of exercise and performance is the most valuable in the horses. They have been selected for strength, speed, and indurance trait. Athletic pheno types are influenced markedly by environment, management, and training. However, it has long been accepted that there are underlying genetic factors. To determine altered mRNA expression in circulating leukocytes of horses induced by exercise. Healthy neutered male warmblood horses were subjected to indoor exercise (trotting with alternative cantering for 6o minutes). Peripheral blood was collected from the jugular vein before and after the exercise, and subsequently buffy coat leukocytes were isolated by centrifugation. Total RNAs was isolated. Cyanine 3-labeled cRNA (complementary RNA) was generated from Agilent’s Low RNA Input Linear Amplification kit with 500 ng total RNA. Labeled cRNA was applied microarray (Agilent technologies, 8x60K) using Agilent’s Gene Expression Hybridization Kit. The present study revealed a subset of mRNAs in equine peripheral blood leukocytes affected by exercise, providing background information for genes associated with exercise in warm-blood horses.
Project description:Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in horse (mRNA)
Project description:Myofibrillar myopathy (MFM) in horses is a late onset disease that affects performance and athleticism. It is characterized by myofibrillar disarray and protein aggregation with no known cause. The objective of this study was to elucidate the molecular drivers of MFM in Warmblood (WB) horses by proteomic profiling (5 MFM WB, 4 non-MFM WB) of gluteal muscle. MFM horses used in this study had a chronic history of poor performance and exercise intolerance as well as accumulation of desmin aggregates in > 4 myofibers per muscle sample. The Equine Neuromuscular Diagnostic Laboratory database at Michigan State University was queried to identify WB horses with snap frozen gluteus medius biopsies available for analysis. Non-MFM control horses were defined as horses with no history of exercise intolerance and no evidence of desmin accumulation or other histopathology in muscle biopsies. Muscle biopsy samples were obtained at rest from horses that had not undertaken strenuous exercise in the preceding 48 hours.