Project description:Squalene synthase (SQS) is a bifunctional enzyme that catalyzes the condensation of two molecules of farnesyl diphosphate (FPP) to give presqualene diphosphate (PSPP) and the subsequent rearrangement of PSPP to squalene. These reactions constitute the first pathway-specific steps in hopane biosynthesis in Bacteria and sterol biosynthesis in Eukarya. The genes encoding SQS were isolated from the hopane-producing bacteria Thermosynechococcus elongatus BP-1, Bradyrhizobium japonicum, and Zymomonas mobilis and cloned into an Escherichia coli expression system. The expressed proteins with a His(6) tag were found exclusively in inclusion bodies when no additives were used in the buffer. After extensive optimization, soluble recombinant T. elongatus BP-1 SQS was obtained when cells were disrupted and purified in buffers containing glycerol. The recombinant B. japonicum and Z. mobilis SQSs could not be solubilized under any of the expression and purification conditions used. Purified T. elongatus His(6)-SQS gave a single band at 42 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and molecular ion at m/z 41886 by electrospray mass spectrometry. Incubation with FPP and NADPH gave squalene as the sole product. Incubation of the enzyme with [(14)C]FPP in the absence of NADPH gave PSPP. The enzyme requires Mg(2+) for activity, has an optimum pH of 7.6, and is strongly stimulated by detergent. Under optimal conditions, the K(m) of FPP is 0.97 +/- 0.10 microM and the k(cat) is 1.74 +/- 0.04 s(-1). Zaragozic acid A, a potent inhibitor of mammalian, fungal, and Saccharomyces cerevisiae SQSs, also inhibited recombinant T. elongatus BP-1 SQS, with a 50% inhibitory concentration of 95.5 +/- 13.6 nM.
Project description:NDH (NADH-quinone oxidoreductase)-1 complexes in cyanobacteria have specific functions in respiration and cyclic electron flow as well as in active CO2 uptake. In order to isolate NDH-1 complexes and to study complex-complex interactions, several strains of Thermosynechococcus elongatus were constructed by adding a His-tag (histidine tag) to different subunits of NDH-1. Two strains with His-tag on CupA and NdhL were successfully used to isolate NDH-1 complexes by one-step Ni2+ column chromatography. BN (blue-native)/SDS/PAGE analysis of the proteins eluted from the Ni2+ column revealed the presence of three complexes with molecular masses of about 450, 300 and 190 kDa, which were identified by MS to be NDH-1L, NDH-1M and NDH-1S respectively, previously found in Synechocystis sp. PCC 6803. A larger complex of about 490 kDa was also isolated from the NdhL-His strain. This complex, designated 'NDH-1MS', was composed of NDH-1M and NDH-1S. NDH-1L complex was recovered from WT (wild-type) cells of T. elongatus by Ni2+ column chromatography. NdhF1 subunit present only in NDH-1L has a sequence of -HHDHHSHH- internally, which appears to have an affinity for the Ni2+ column. NDH-1S or NDH-1M was not recovered from WT cells by chromatography of this kind. The BN/SDS/PAGE analysis of membranes solubilized by a low concentration of detergent indicated the presence of abundant NDH-1MS, but not NDH-1M or NDH-1S. These results clearly demonstrated that NDH-1S is associated with NDH-1M in vivo.
Project description:A comparative genomics analysis among all forty whole genome sequences available for cyanobacteria (3 thermophiles- Thermosynechococcus elongatus BP-1, Synechococcus sp. JA-2-3B'a (2-13), Synechococcus sp. JA-3-3Ab and 37 mesophiles) was performed to identify genomic and proteomic factors responsible for the behaviour of T. elongatus BP-1, a thermophilic unicellular cyanobacterium with optimum growth temperature [OGT] of 55°C. Majority of genomic and proteomic characteristics for this cyanobacterium indicated contrasting features indicating its mesophilic behaviour while the role of mutational biasness and selection pressure is thought to be responsible for high OGT. Contradictory results were obtained for T. elongatus for synonymous codon usage, CvP-bias and amino acid composition with respect to thermophilic behaviour. Calculated J2 index is lowest among all cyanobacterial genomes. Except for proline and termination codons, T. elongatus showed synonymous codon usage pattern which is expected for mesophiles. Results indicated that among cyanobacterial genomes, majority of genomic and proteomic determinants put T. elongatus very close to mesophiles and the whole genome of this organism represents continuous gain of mesophilic rather than thermophilic behavior.
Project description:Ribosomal proteins are essential to life. While the functions of ribosomal protein-encoding genes (RPGs) are highly conserved, the evolution of their regulatory mechanisms is remarkably dynamic. In Saccharomyces cerevisiae, RPGs are unusual in that they are commonly present as two highly similar gene copies and that they are over-represented among intron-containing genes. To investigate the role of introns in the regulation of RPG expression, we constructed 16 S. cerevisiae strains with precise deletions of RPG introns. We found that several yeast introns function to repress rather than to increase steady-state mRNA levels. Among these, the RPS9A and RPS9B introns were required for cross-regulation of the two paralogous gene copies, which is consistent with the duplication of an autoregulatory circuit. Splicing specific microarrays were used to assess the genome-wide defects in gene expression and pre-mRNA splicing that result from a deletion of a single ribosomal protein gene intron.