Project description:Transcriptional change by profiling yeast cells, comparing polyploid S. cerevisiae cells at 1000 generations with ancestral cells. Transcriptional change by profiling yeast cells, comparing both ancestral and evolved cells with diploid cells, stands for control.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:Saccharomyces cerevisiae IMS0002 which, after metabolic and evolutionary engineering, ferments the pentose sugar arabinose. Glucose and arabinose-limited anaerobic chemostat cultures of IMS0002 and its non-evolved ancestor IMS0001 were subjected to transcriptome analysis to identify key genetic changes contributing to efficient arabinose utilization by strain IMS0002.
Project description:Cell-cycle transcript dynamics from two species of wild-type budding yeast growing at 30 degrees Celsius in rich media: Saccharomyces cerevisiae (BF264-15D background) and Cryptococcus neoformans var. grubii (H99F background). We compared programs of cell-cycle-regulated genes between distantly related budding yeasts.
Project description:We have employed whole genome microarray expression profiling as a discovery platform to identify genes implicated in the resistance to cobalt in Saccharomyces cerevisiae. The evolved strains and the wild type were harvested in exponential phase
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.