Project description:We measured the mRNA abundance in E.coli using RNAseq to calculate mRNA lifetimes. The data is used in support of a larger paper on the proteome and transcriptome of E.coli.
Project description:The goal of the study is to obtain rna concentrations of E.coli under different growth conditions including growth phase carbon source and salt stresses of Mg+2 and Na+
Project description:E. coli isolates from different CF patients demonstrate increased growth rate when grown with glycerol, a major component of fecal fat, as the sole carbon source compared to E. coli from healthy controls. CF and control E. coli isolates have differential gene expression when grown in minimal media with glycerol as the sole carbon source. While CF isolates display a growth promoting transcriptional profile, control isolates engage stress and stationary phase programs, which likely results in slower growth rates.
Project description:Escherichia coli release Extracellular Vesicles (EVs) which carry diverse molecular cargo. Pathogenic E.coli EVs contain virulence factors which assist during infection in the host in different mechanisms.The RNA cargo of E.coli EVs has not been assessed in their effect in the host. We used microarray data to asses and compare the global response of bladder cells to EV-RNA from pathogenic E.coli (Uropathogenic UPEC 536) and non-pathogenic E. coli (probiotic Nissle 1917)
Project description:We measured the mRNA abundance in E.coli using RNAseq to calculate mRNA lifetimes. The data is used in support of a larger paper on the proteome and transcriptome of E.coli. Comparison of mRNA abundance over time, after the addition of transcription inhibitor, rifampicin. Center: Harvard University
Project description:To determine the total mRNA polyadenylated in E.coli, we transexpressed mammalian nuclear poly(a) binding protein in E.coli through plasmid and chromosomal integration. RNA Seq analysis revealed general upregulation of around 600 genes commonly in between chrosomal MG PABP and plasmid PABP. 32% of the commonly upregulated genes fall into stress response mRNAs.