Project description:The similarity of Lyme borreliosis to other diseases and the complex pathogenesis cause diagnostic and therapeutic difficulties. Changes at the cellular and molecular level after Borrelia sp. infection remain still poorly understood. Therefore, the present study focused on the gene expression in human dermal fibroblasts in differentiation of infection with Borrelia garinii, Borrelia afzelii and Borrelia burgdorferi sensu stricto spirochetes. For microarray analysis 10 samples were used: 3 control samples - K, 2 samples of NHDF cells infected with Borrelia garinii - G, 2 samples of NHDF cells infected with Borrelia afzelii - A and 3 samples of NHDF cells infected with Borrelia burgdorferi sensu stricto - SS.
Project description:The aim of the study was to compare the global transcriptional responses elicited in NHDF cells by three different strains of Borrelia burgdorferi ss (the agent of Lyme borreliosis), representative of different stages in the life cycle of Borrelia: one reference strain isolated from a tick (strain N40), and two invasive strains isolated from skin biopsy of erythema migrans (strain Pbre c4) and acrodermatitis chronica atrophians skin lesions (strain 1408 c1). Three different experimental conditions have been tested: (1) unstimulated NHDF vs NHDF stimulated by Borrelia strain N40 / (2) unstimulated NHDF vs NHDF stimulated by Borrelia strain Pbre c4 / (3)M-BM- unstimulated NHDF vs NHDF stimulated by Borrelia strain 1408 c1. There is 2 biological replicates for each condition. All NHDF stimulation have been performed in independent experiments.
Project description:Transcriptional profiling of NHDF Cells comparing control untreated fibroblasts with fibroblasts coincubated with three different species of the Borrelia burgdorferi sensu lato group.
Project description:To reveal the comprehensive gene expression of normal human dermal fibroblasts (NHDFs) based on the interaction of GlcNAc-bearing polymer, AC-GlcNAc10, with cell surface vimentin at 24 h, we performed a DNA microarray for NHDFs treated with AC-GlcNAc10. The DNA microarray analysis revealed altered expression of approximately 1000 genes in NHDF vs. NHDF treated with AC-GlcNAc10 by extracting differentially expressed genes with the ratio of >1.5 and <0.66-fold changes between the gene expressions of NHDF vs. NHDF treated with AC-GlcNAc10, and Z-score >2.0 and <-2.0. We observed the downregulation of gene expression related to cell cycle progression, such as baculoviral IAP repeat-containing protein 5 (BIRC5; survivin), and the upregulation of gene expression related to cell cycle arrest, such as cyclin-dependent kinase inhibitor 1A (CDKN1A; p21).
Project description:We have used RNA-sequencing on six different proliferating cell lines consisting of normal human dermal fibroblasts (NHDF), normal human epidermal keratinocytes (NHEK), pericytes (PC), human microvADSCular blood endothelial cells (HMEC), lymphatic endothelial cells (LEC) and adipose derived stem cells (ADSC), subjected to different doses of radiotherapy.
Project description:Human umbilical vein endothelial cells (HUVECs) formed capillary structures when co-cultured with normal human dermal fibroblasts (NHDFs). HUVEC competence and NHDF supportiveness of cord formation were found to be highly cell-passage dependent with the early passage cells forming more angiogenic cord structures. We thus profiled gene expression in NHDFs with different passages to understand the molecular mechanisms underlying the in vitro angiogenesis control. Keywords: Time course
Project description:Normal human dermal fibroblasts (NHDF) were treated under serum-free conditions with cell culture media conditioned by breast cancer cell lines (SkBr3, MDA-MB-468, T47D) for 72 hours and subjected to gene expression profiling with Illumina platform.
Project description:Normal human dermal fibroblasts (NHDF) and human lung microvascular endothelial cells (HMVEC-L) were irradiated with protons (0, 0.5, 1 and 2 Gy, 1GEv/n) at Brookhaven National Labs (BNL). Aim of the study is to find differentially transcribed genes in dependence of radiation dose/source and cell type.
Project description:We explored the role of mammalian ETS1/2 and Mesp homologues of cardiogenic transcription factors of Ciona intestinalis, to convert primary human dermal fibroblasts into cardiac progenitors. ETS1/2 and Mesp homologues of cardiogenic transcription factors of Ciona intestinalis, to convert primary human dermal fibroblasts into cardiac progenitors. Here we show murine Ets2 has an obligatory role for directing cardiac progenitors during cardiopoesis in embryonic stem cells. ETS2 converted fibroblasts into KDR/Flk1+ replicative cells but, like the purported cardiac master regulatory gene Mesp1, could not by itself generate cardiac progenitors de novo from fibroblasts. Co-expression of both Ets2 and Mesp1, however, successfully reprogrammed differentiated fibroblasts into cardiac progenitors, as shown by the de novo appearance of core cardiac transcription factors, gap junction proteins, sarcomeric proteins, electrical activity and contractility. ETS2 and Mesp1 sit at the pinnacle of the cardiopoesis regulatory hierarchy and are well suited for treating human heart disease. Co-expression of both Ets2 and Mesp1, reprogrammed differentiated fibroblasts into cardiac progenitors All sample were done in triplicates, controls were NHDF and ETS2 only infected cells. NHDF were first infected with Doxycyline redulated (Doxy-) ETS2 lentivirus and supplemented with doxycycline for 1 week, sequentially cells were infected with Doxy-Mesp1 and treated for 1 more week. Cells were then aggegated to form EB and hangdrop for 1 week, at the end of that period cells were plated and samples were taken every 24 hrs