Project description:The plant hormone jasmonic acid (JA) has been known as a signal molecule that is induced by various stresses and mediates plant defense responses. Rice O. sativa inductively produces variety of defensive compounds upon abiotic and biotic stress conditions, such as wounding and insect attack. The bHLH transcription factor RERJ1 has previously been identified as JA-inducible factor whose expression is also rapidly induced by wounding. We identified RERJ1-dependent and wound-inducible genes by comparison with transcriptomes of wound treated wild-type and a Tos17-rerj1 defective mutant rice. Expression profiling between rice leaves of wild-type and tos17-rerj1 mutant treated by wounding for 0, 0.5, 1 and 2 h was compared using two-color method with two biological replicates.
Project description:The plant hormone jasmonic acid (JA) has been known as a signal molecule that is induced by various stresses and mediates plant defense responses. Rice O. sativa inductively produces variety of defensive compounds upon abiotic and biotic stress conditions, such as wounding and insect attack. The bHLH transcription factor RERJ1 has previously been identified as JA-inducible factor whose expression is also rapidly induced by wounding. We identified RERJ1-dependent and wound-inducible genes by comparison with transcriptomes of wound treated wild-type and a Tos17-rerj1 defective mutant rice.
Project description:5 leaves old rice plantlets were infected with Magnaporthe grisea spores and zero, two hours and twenty four houres after infection samples were collected
Project description:To understand the dynamics and global gene reprogramming in the early response to mechanical wounding in rice, the transcriptional response to mechanical injury was analyzed. A time-course experiment revealed the highly dynamic nature of the wound response in rice. Mechanical wounding triggered extensive gene expression reprogramming in the locally wounded leaf, affecting various physiological processes, including defense mechanisms and potentially tissue repair and regeneration. The rice response to mechanical wounding displayed both differences and similarities compared to the response to jasmonate treatment. These results highlight the importance of early JA signaling in response to mechanical stress in rice. This analysis provides an overview of the global transcriptional response to mechanical stress in rice, offering valuable insights for future studies on rice's response to injury, insect attack, and abiotic stresses.
Project description:Although Cochliobolus miyabeanus is an important fungal leaf pathogen on rice plants worldwide, it is largely neglected by molecular plant phytopathologists. To shed new light on the molecular and genetic basis of the rice – C. miyabeanus interaction, we compared the transcriptome of rice leaves 12h post inoculation to uninfected leaves. Even though usable sources of resistance against brown spot disease caused by C. miyabeanus are scarce, silicon application emerges as a sustainable protection strategy. Many articles report the beneficial effect of silicon on brown spot resistance. however the underlying mechanisms remain largely unclear. The influence of silicon application on the transcriptome of healthy and infected rice leaves 12hpi was compared as well in an attempt to disentangle the modulation of silicon-induced brown spot resistance.
Project description:Rice is one of the most important global food crops, and is also a model organism for cereal research 31 . Complete genome sequencing of rice, together with advances in transcriptomics and proteomics, has had a dramatic impact on plant growth and 5 breeding programs 32 . Genomic analysis of DNA methylation in rice has revealed methylation patterns associated with gene bodies and promoters, and the occurrence of high levels of DNA methylation in the centromeric domain 33 . A genome-wide investigation of acetylation in rice revealed that H3K9ac and H3K27ac are mainly enriched at transcription start sites associated with active transcription 34 . Furthermore, global proteome analysis has shown that phosphorylation and succinylation are involved in diverse cellular and metabolic processes 35, 36 . However, despite these considerable advances in our knowledge, additional large-scale analysis of the lysine acetylome in rice is expected to identify many more Kac sites and acetylated proteins in this improtant crop plant. In this study, affinity enrichment and high-resolution LC-MS/MS were used for large-scale analysis of the lysine acetylome in rice variety Nipponbare. In total, 1353 lysine acetylation sites were detected in 866 protein groups in rice seedlings. Proteomic analysis showed that Kac occurs in proteins involved in diverse biological processes with varied cellular functions and subcellular localization.