Project description:Genistein is one of the flabonoids which is included in high concentration in soy and has a high estrogenic activity. Beneficial effects of estrogen or hormone replacement therapy (HRT) on muscle mass or muscle atrophy have been demonstrated. We investigated the preventive effects and underlying mechanisms of genistein intake on denervation-induced muscle atrophy. Genistein intake significantly suppressed the loss of soleus muscle weight and the denervation-induced up-regulations of FOXO1 protein. The results of a DNA microarray showed that the estrogen receptor (ER) target genes are changed by genistein intake. Genistein suppressed the soleus muscle atrophy, and it was attenuated under the ER antagonist treatment. The administration of an ERα agonist suppressed the denervation-induced muscle atrophy and up-regulation of Atrogin1 gene expression, but the ERβ agonist had no effect.
Project description:Skeletal muscle exhibits remarkably plasticity under both physiological and pathological conditions. We used adult mice with sciatic denervation as model of muscle atrophy. SnRNA-seq was performed to generate single-nucleus transcriptome profiles of gastrocnemius from normal and denervation mice. Our results define the myonuclear transition, metabolic remodeling and gene regulation networks associated with muscle atrophy induced by denervation and illustrated the molecular basis of heterogeneity and plasticity of muscle cells in response to muscle atrophy, thus providing a resource for exploring molecular mechanisms leading to muscle atrophy
Project description:Muscle atrophy is associated with aging (sarcopenia) and chronic unloading (such as bed confinement and immobilization with casts), as well as various pathological conditions such as type 1 diabetes and nerve injury (denervation). C57BL/6 mice (7 weeks old, male) were denervated. After 14 days, skeletal muscle was collected and RNA extracted. Expression of Dnmt3a was reduced while expression of Gdf5 was increased by denervation.
Project description:Muscle denervation causes skeletal muscle atrophy. The goal of these studies was to determine the effects of denervation on skeletal muscle mRNA levels in C57BL/6 mice. For additional details see Ebert et al, Stress-Induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy. JBC epub. June 12, 2012.
Project description:Analysis of denervation induced regulation of muscle mass at gene expression level. The hypothesis tested in the present study was that the presence of MuRF1 contributes to the extent of gene expression changes observed in specific sets of genes during a challenge leading to muscle atrophy. Results provide important information on the response of triceps surae muscle to sciatic nerve resection (denervation), such as specific structural, metabolic, and neuromuscular junction associated genes, that may be influenced by MuRF1 during atrophy. Total RNA obtained from isolated triceps surae muscle subjected to 3 or 14 days post-denervation compared to nonsurgically treated littermate control muscles.
Project description:Muscle denervation causes skeletal muscle atrophy. The goal of these studies was to determine the effects of denervation on skeletal muscle mRNA levels in C57BL/6 mice. For additional details see Ebert et al, Stress-Induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy. JBC epub. June 12, 2012. Left sciatic nerves of C57BL/6 mice were transected. Seven days later bilateral tibialis anterior muscles were harvested. mRNA levels in denervated muscles were normalized to levels in contralateral innervated muscles.
Project description:In skeletal muscle, the pattern of electrical activity regulates the expression of proteins involved in synaptic transmission, contraction and metabolism. Disruptions in electrical activity, resulting from prolonged bed-rest, cast-immobilization or trauma, inevitably lead to muscle atrophy. The mechanisms that regulate muscle atrophy are poorly understood, but it seems likely that changes in gene expression play a key role in initiating and maintaining a muscle atrophy program. Previously, we found that Runx1, a transcription factor previously termed AML1, was substantially induced in muscle following denervation. More recently, we sought to determine whether this increase in Runx1 expression may be causally related to the morphological changes in skeletal muscle that accompany muscle disuse, notably muscle atrophy. We found that Runx1 is indeed required to sustain muscle and to minimize atrophy following denervation. Experiments described here are designed to identify the genes that are regulated by Runx1 in skeletal muscle with the particular goal of identifying genes that regulate muscle atrophy. We propose to use microarray analysis to identify genes, expressed in skeletal muscle, that are mis-regulated in mice lacking Runx1. We inactivated runx1 selectively in skeletal muscle and found that denervated myofibers in mutant mice atrophy far more (90% atrophy) than in wild-type mice (30% atrophy). We therefore reason that Runx1 activates and/or represses genes that are required to sustain muscle and to minimize atrophy. We generated MCK::cre; runx1f/- and runx1f/- control mice. In normal mice, an increase in runx1 expression is detected by two days after denervation and is maximal by five days after denervation. Muscle atrophy is first evident between one and two weeks after denervation. As we wish to avoid detecting global changes in gene expression that are associated with late stages of muscle atrophy, we plan to denervate muscle for three or five days and to compare gene expression in dissected innervated and denervated muscles from mutant and control mice. We will generate thirty samples for comparison-5 replicates per condition: Samples 1-3 from runx1f/- control mice. (1) innervated tibialis anterior muscles (TA); (2) 3-day-denervated TA; (3) 5-day-denervated TA. Samples 4-6 from MCK::cre; runx1f/- mice. (4) innervated TA; (5) 3-day-denervated TA; (6) 5-day-denervated TA. We obtain sufficient total RNA (10 micrograms) from each dissected muscle to avoid pooling samples. We will analyze adult mice of the same age (~six weeks after birth; most will be littermates) and sex-male. It is difficult to anticipate how many genes will be identified in this screen, as few target genes for Runx1 have been identified in any cell type and none in skeletal muscle. Moreover, although we would prefer to focus our attention on genes that are strongly dependent upon Runx1 expression (e.g. more than 5-fold difference in expression in wild-type and mutant mice), we do not know the extent to which target gene expression will depend upon Runx1. For these reasons, in these experiments, we will analyze expression from five âidenticalâ samples, so that we can be confident that even small (e.g. three-fold) differences in expression can be reliably determined. Importantly, in order to confirm results obtained from the microarray data, we will use other assays (RNase protection) to measure RNA expression of candidate genes in innervated and denervated muscles of wild-type and mutant mice.
Project description:To investigate the role of myonectin in muscle atrophy, myonectin-KO and wild type (C57BL/6J) mice were subjected to sciatic nerve denervation, leading to gastrocnemius muscle atrophy.
Project description:Loss of muscle proteins and the consequent weakness has important clinical consequences in diseases such as cancer, diabetes, chronic heart failure and in ageing. In fact, excessive proteolysis causes cachexia, accelerates disease progression and worsens life expectancy. Muscle atrophy involves a common pattern of transcriptional changes in a small subset of genes named atrophy-related genes or atrogenes. Whether microRNAs play a role in the atrophy program and muscle loss is debated. To understand the involvement of miRNAs in atrophy we performed miRNA expression profiling of mouse muscles under wasting conditions such as fasting, denervation, diabetes and cancer cachexia. We found that the miRNA signature is peculiar of each catabolic condition. We then focused on denervation and we revealed that changes in transcripts and microRNAs expression did not occur simultaneously but were shifted. Indeed, while the transcriptional control of the atrophy-related genes peaks at 3 days, the changes of miRNA expression maximised at 7 days after denervation. Among the different miRNAs, microRNA-206 and 21 were the most induced in denervated muscles. We characterized their pattern of expression and defined their role in muscle homeostasis. Indeed, in vivo gain and loss of function experiments revealed that miRNA-206 and miRNA-21 were sufficient and required for atrophy program. In silico and in vivo approaches identified the transcription factor YY1 and the translational initiator factor eIF4E3 as downstream targets of these miRNAs. Thus miRNAs are important for the fine-tuning of the atrophy program and their modulation can be a novel potential therapeutic approach to counteract muscle loss and weakness in catabolic conditions. To determine which miRNAs are relevant for the atrophic process, we performed miRNA expression profiles of muscles from different atrophic models (starvation, denervation and streptozotocin-induced diabetes). We checked whether there was a common signature of miRNA expression in different atrophying conditions and we found that every catabolic situation require a peculiar pattern of miRNA. We further focus on the condition of denervation and identified the most up-regulated miRNAs in this condition, miRNA-206 and miRNA-21.
Project description:Local biosynthesis of estrogen in lower abdominal skeletal muscle tissue leads to estrogen receptor-α-mediated fibrosis, muscle atrophy, and inguinal hernia. We used microarrays to detail the gene expression after aromatase expression in lower abdominal muscle tissue and identify distinct classes of up-regulated or down-regulated genes.