Project description:Dominant mutations in cardiac transcription factor genes cause human inherited congenital heart defects (CHDs), but their molecular basis is not understood. Transcription factors and Brg1/Brm-associated factor (BAF) chromatin remodeling complex interactions suggest potential mechanisms, but the role of BAF complexes in cardiogenesis is not known. Here we show that dosage of Brg1 is critical for mouse and zebrafish cardiogenesis. Disrupting the balance between Brg1 and disease-causing cardiac transcription factors, including Tbx5, Tbx20, and Nkx2-5, causes severe cardiac anomalies, revealing an essential allelic balance between Brg1 and these cardiac transcription factor genes. This suggests that relative levels of transcription factors and BAF complexes are important for heart development, which is supported by reduced occupancy of Brg1 at cardiac genes in Tbx5 haploinsufficient hearts. Our results reveal complex dosage-sensitive interdependence between transcription factors and BAF complexes, providing a potential mechanism underlying transcription factor haploinsufficiency, with implications for multigenic inheritance of CHDs. We performed transcriptional profiling of E11.5 hearts from mice heterozygous for deletions of Brg1, Tbx5, or Nkx2-5, and mice that were compound heterozygotes for Brg1 and each transcription factor gene (Tbx5 and Nkx2-5).
Project description:Dominant mutations in cardiac transcription factor genes cause human inherited congenital heart defects (CHDs), but their molecular basis is not understood. Transcription factors and Brg1/Brm-associated factor (BAF) chromatin remodeling complex interactions suggest potential mechanisms, but the role of BAF complexes in cardiogenesis is not known. Here we show that dosage of Brg1 is critical for mouse and zebrafish cardiogenesis. Disrupting the balance between Brg1 and disease-causing cardiac transcription factors, including Tbx5, Tbx20, and Nkx2-5, causes severe cardiac anomalies, revealing an essential allelic balance between Brg1 and these cardiac transcription factor genes. This suggests that relative levels of transcription factors and BAF complexes are important for heart development, which is supported by reduced occupancy of Brg1 at cardiac genes in Tbx5 haploinsufficient hearts. Our results reveal complex dosage-sensitive interdependence between transcription factors and BAF complexes, providing a potential mechanism underlying transcription factor haploinsufficiency, with implications for multigenic inheritance of CHDs.
Project description:Tissue-specific transcription factors initiate differentiation toward a specialized cell type by inducing transcription-permissive chromatin modifications at target gene promoters, through the recruitment of the SWI/SNF chromatin-remodeling complex (1, 2). The molecular mechanism that regulates the chromatin re-distribution of SWI/SNF in response to differentiation signals is currently unknown. Here we show that the muscle determination factor MyoD and the SWI/SNF structural sub-unit, BAF60c (SMARCD3), form a complex on the regulatory elements of MyoD-target genes in undifferentiated myoblasts, prior to the activation of gene expression. MyoD-BAF60c complex is devoid of the ATP-dependent enzymatic sub-units Brg1 and Brm, is required for stable MyoD binding to Ebox sequences, and marks the chromatin for signal-dependent recruitment of the SWI/SNF core complex to muscle loci. BAF60c phosphorylation on a conserved threonine by differentiation-activated p38 signalling promotes the incorporation of MyoD-BAF60c into a Brg1-based SWI/SNF complex, which is competent to remodel the chromatin and activates transcription of MyoD-target genes. Our data support an unprecedented two-step model, by which pre-assembled BAF60c-MyoD complex directs the SWI/SNF complex chromatin re-distribution to muscle loci in response to differentiation cues. Differentiation of C2C12 cells individually interfered for BRG1, BAF60B, BAF60C